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Abstract

Let G be a compact, connected, simply-connected Lie group. We use the
Fourier-Mukai transform in twisted K-theory to give a new proof of the ring
structure of the K-theory of G.
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1. Introduction

The celebrated Fourier-Mukai transform is a powerful tool employed in
the study of sheaves in algebraic geometry. Moreover it has deep ties to
homological mirror symmetry and the geometric Langlands program. Much
less appreciated is the potential for the Fourier-Mukai transform as a K-
theoretic tool. In this paper we will give an application of the Fourier-Mukai
transform to topological K-theory, namely, we provide a new, conceptually
simple proof of Hodgkin’s theorem:

Theorem 1.1 (Hodgkin [11]). Let G be a compact, connected, simply con-
nected semisimple Lie group of rank n. Then K⇤(G) is isomorphic to an
exterior algebra over Z on n odd generators ⇢

1

, . . . , ⇢n:

Kj(G) =
M

a=j (mod 2)

^a

Z
{⇢

1

, . . . , ⇢n}.
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Theorem 1.1 can be divided into two statements. The first is that the
K-theory of G has no torsion and the second being the multiplicative struc-
ture. The proofs of both of these statements in [11] are highly technical,
raising the question of whether there are simpler arguments. A new proof
of torsion-freeness was given in [1] and a simpler proof of the multiplicative
structure, assuming torsion-freeness, in [2]. Theorem 1.1 can alternatively be
deduced through an application of Hodgkin’s equivariant Künneth theorem
[12]. In this approach, the hard work in proving Theorem 1.1 is shifted to the
non-trivial task of establishing the equivariant Künneth theorem. Our proof
of the theorem is independent of the equivariant Künneth theorem, making
it arguably the shortest proof known.

There are three main steps to the proof, carried out in Sections §3-5. In
§3 we use the Fourier-Mukai transform to obtain an isomorphism between
the K-theory of G and the twisted K-theory of G/T ⇥ T̂ , where T ⇢ G is a
maximal torus and T̂ is the dual torus. In §4 we apply the Atiyah-Hirzebruch
spectral sequence in twisted K-theory to the fibration G/T ⇥ T̂ ! T̂ in order
to compute the twisted K-theory groups. In §5 we introduce a convolution
product in twisted K-theory which allows us to determine the multiplicative
structure of K⇤(G). The main theoretic tools used in the proof are twisted
K-theory and topological T-duality. We assume familiarity with twisted K-
theory (references [6],[3],[10] provide su�cient background), giving only a
brief review of important details in §2. The relevant aspects of T-duality
and the Fourier-Mukai transform will be reviewed where necessary.

2. Twisted K-theory

There are several models that can be used to describe twists of K-theory.
We will describe twists as bundle gerbes, following [6]. For a topological
space X, a bundle gerbe ⌧ on X will be called a twisting class, or simply a
twist. We let K⇤(X, ⌧) denote the twisted K-theory associated to the twist-
ing class ⌧ . We denote the tensor product of ⌧

1

, ⌧
2

by ⌧
1

⌦ ⌧
2

, the dual of ⌧
by ⌧�1 and the trivial twist by 1. The tensor product, dual and trivial twist
define an abelian group structure on the set of isomorphism classes of twists,
which can be naturally identified with H3(X,Z).

Recall that the group of automorphisms 1 ! 1 of the trivial gerbe is
naturally identified with H2(X,Z), the group of line bundles on X. More
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generally, for an isomorphism  : ⌧
1

! ⌧
2

of twists and a line bundle L on
X, there is a naturally defined tensor product L⌦ : ⌧

1

! ⌧
2

. This product
makes the set of isomorphisms ⌧

1

! ⌧
2

into a torsor for H2(X,Z), whenever
⌧
1

and ⌧
2

are isomorphic.

A trivialisation of a twist ⌧ is defined to be an isomorphism � : ⌧ ! 1.
In terms of bundle gerbes, such a trivialisation � is equivalent to a rank 1
bundle gerbe module for ⌧�1 [6]. Thus � defines a class [�] 2 K0(X, ⌧�1) in
twisted K-theory. Rank 1 bundle gerbe modules will be referred to as twisted
line bundles. The trivialisation � determines an isomorphism � : K⇤(X, ⌧) !
K⇤(X), which coincides with the product ⌦[�] : K⇤(X, ⌧) ! K⇤(X). More
generally, an isomorphism  : ⌧

1

! ⌧
2

defines a class [ ] 2 K0(X, ⌧
2

⌦ ⌧�1

1

)
which realises the isomorphism  : K⇤(X, ⌧

1

) ! K⇤(X, ⌧
2

) as the product
with [ ].

To define the Fourier-Mukai transform, we need the existence of push-
forward maps in twisted K-theory [9],[10]. For our purposes the following
special case is su�cient. Let f : X ! Y be a rank n principal torus bundle
and let ⌧ be a twisting class on Y . There is a well-defined push-forward
map f⇤ : Kj(X, f ⇤(⌧)) ! Kj�n(Y, ⌧). The two main properties of the push-
forward we need are the projection formula and the base change formula.
The projection formula is the identity f⇤(x)⌦ y = f⇤(x⌦ f ⇤(y)), where x 2

K⇤(X, f ⇤(⌧
1

)), y 2 K⇤(Y, ⌧
2

). For the change of base formula, let g : Z ! Y
be any continuous map, f̃ : f ⇤(X) ! Z the pullback bundle and g̃ : f ⇤(X) !
X the naturally defined bundle map, so that f � g̃ = g � f̃ . The change of
base formula is the identity g⇤(f⇤(x)) = f̃⇤(g̃⇤(x)), for x 2 K⇤(X, f ⇤(⌧)).

3. Twisted Fourier-Mukai duality

Recall that G is a compact, connected, simply connected, semisimple Lie
group of rank n. Let T ⇢ G be a maximal torus in G. Letting t denote the
Lie algebra of T , we have T ' t/⇤, where ⇤ = ⇡

1

(T ) ' Zn. Let T̂ be the
dual torus to T , defined as T̂ = t⇤/⇤⇤. Let t1, . . . , tn be a basis for ⇤ and
t
1

, . . . , tn the dual basis. Using H1(T̂ ,Z) ' ⇤, we identify t1, . . . , tn with a
basis of 1-forms on T̂ . Similarly t

1

, . . . , tn define a basis of 1-forms for T . The
projection ⇡ : G ! G/T is a principal torus bundle of rank n and has a Chern
class c 2 H2(G/T,⇤). Using the basis t1, . . . , tn, we write c = cit

i, where
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ci 2 H2(G/T,Z). This defines a twisting class  = ci ` ti 2 H3(G/T⇥ T̂ ,Z).

Let M = G/T and observe that G and G/T ⇥ T̂ are torus bundles over
M . In fact they are T-dual in the sense of [7, 8, 4, 5], the meaning of which
we now explain. Set X = G, X̂ = G/T ⇥ T̂ , let q : X̂ ⇥M X ! X̂ be the
projection onto the first factor and p : X̂ ⇥M X ! X the projection to the
second factor. The first requirement for T -duality is that the twist  is trivial
on the fibres of X̂, which is clearly the case here. Second, there must exist
a trivialisation P : q⇤() ! 1 of q⇤() on X̂ ⇥M X. Given a trivialisation
⌧ : |

ˆT ! 1 of  on the fibres of X̂ ! M , we may identify the restriction
of P to the fibres of X̂ ⇥M X ! M with a line bundle P

0 on T̂ ⇥ T , via
P|

ˆT⇥T = P

0
⌦ q⇤(⌧). We say that P is a twisted Poincaré line bundle if on

each fibre of X̂ ! M there is a trivialisation ⌧ : |
ˆT ! 1 for which P

0 is the
Poincaré line bundle on T̂ ⇥ T . By the Poincaré line bundle, we mean the
complex line bundle on T̂ ⇥ T with Chern class ti ` ti. From the existence
theory for T-duals in [8, 5], we have:

Theorem 3.1. The space X̂ = G/T ⇥ T̂ with twisting class  is T-dual to
X = G with trivial twisting class. That is, there exists a twisted Poincaré
line bundle P on X̂ ⇥M X.

Choose a twisted Poincaré line bundle P . Being a twisted line bundle for
q⇤()�1, P defines a twisted K-theory class P 2 K⇤(X̂ ⇥M X, q⇤()�1). We
use this to define the K-theoretic Fourier-Mukai transform T : K⇤(G/T ⇥

T̂ ,) ! K⇤�n(G) by:
T (x) = p⇤(q

⇤(x)⌦ P). (1)

The main property of T-duality is that T-dual pairs have isomorphic
twisted K-theories under the Fourier-Mukai transform [8, 5]. Thus:

Theorem 3.2. T : K⇤(G/T⇥T̂ ,) ! K⇤�n(G) is an isomorphism of abelian
groups.

In the following sections we will determine the additive and multiplicative
structure of K⇤(G) by studying the twisted K-theory of G/T ⇥ T̂ .

4. Additive structure

To compute the additive structure of K⇤(G/T ⇥ T̂ ,), we apply the
Atiyah-Hirzebruch spectral sequence in twisted K-theory to the fibration
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G/T⇥T̂ ! T̂ . This gives a spectral sequence Ep,q
r converging toKp+q(G/T⇥

T̂ ,). Associated to the spectral sequence is a filtration:

{0} = F n+1,k
✓ F n,k

✓ · · · ✓ F 1,k
✓ F 0,k = Kk(G/T ⇥ T̂ ,) (2)

such that the associated graded groupGrp(Kq(G/T⇥T̂ ,)) = F p,p+q/F p+1,p+q

coincides with Ep,q
1 . The E

2

-page is given by:

Ep,q
2

= Hp(T̂ ,Kq(G/T )),

where K

q(G/T ) is a local system with coe�cient group Kq(G/T ). The
local system K

q(G/T ) is the sheaf on T̂ associated to the presheaf T̂ ◆

U 7! Kq(G/T ⇥ U,|G/T⇥U). In this spectral sequence, we may consider
p to be integer-valued while q is an integer mod 2 (this applies also to
the filtration F p,q). Since K1(G/T ) = 0, we need only consider the terms
Ep,0

2

= Hp(T̂ ,K(G/T )), where K(G/T ) = K

0(G/T ).

While the fibre bundle G/T ⇥ T̂ is trivial, the local system K(G/T ) has
non-trivial monodromy arising from the twist . Observe that ⇡

1

(T̂ ) ' ⇤⇤ is
free abelian with generators t

1

, . . . , tn. Let Li be the complex line bundle on
G/T with Chern class ci. The monodromy around the loop defined by ti is
the action of the tensor product ( · )⌦ [Li] : K(G/T ) ! K(G/T ) by the line
bundle Li. Let R[T ] = Z[⇤⇤] = Z[t±

1

, . . . , t±n ] be the group ring of ⇤⇤, which is
also the representation ring of the torus T . Let ✏ : R[T ] ! Z be the augmen-
tation defined by ✏(ti) = 1. This makes Z an R[T ]-module. The monodromy
action makes K(G/T ) into an R[T ]-module, giving isomorphisms:

Hp(T̂ ,K(G/T )) ' Hp(⇤⇤, K(G/T )) ' ExtpR[T ]

(Z, K(G/T )).

By Poincaré duality Hp(T̂ ,K(G/T )) ' Hn�p(T̂ ,K(G/T )) and we have:

Hp(T̂ ,K(G/T )) ' Hp(⇤
⇤, K(G/T )) ' TorR[T ]

p (Z, K(G/T )).

Let R[G] denote the representation ring of G. Restriction to the max-
imal torus gives an injection i : R[G] ! R[T ] and defines an augmentation
✏G = ✏ � i : R[G] ! Z. This makes Z into an R[G]-module. Recall that
there is an isomorphism K(G/T ) = R[T ]⌦R[G]

Z of R[T ]-modules [14] (note
that the proof does not require the equivariant Künneth theorem). We thus

have Tor
R[T ]

p (Z, K(G/T )) = Tor
R[T ]

p (Z, R[T ] ⌦R[G]

Z). We now recall the
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Pittie-Steinberg theorem [16, 17], which asserts that R[T ] is a free R[G]-
module. Therefore, the change of ring spectral sequence for Tor groups gives
isomorphisms:

TorR[T ]

p (Z, R[T ]⌦R[G]

Z) ' TorR[G]

p (Z,Z).

Recall that the representation ring R[G] of G is a polynomial ring R[G] =
Z[�

1

, . . . , �n] over the fundamental irreducible representations �
1

, . . . , �n. If
we set �̃i = �i � ✏G(�i), then R[G] ' Z[�̃

1

, . . . , �̃n] and ✏G(�̃i) = 0. LetVi
Z{⇢1, . . . , ⇢n} be the i-th exterior power over Z on n generators ⇢

1

, . . . , ⇢n.
Recall the Koszul resolution for the R[G]-module Z:

· · ·

@
�!

^
1

Z
{⇢

1

, . . . , ⇢n}⌦Z R[G]
@

�!

^
0

Z
{⇢

1

, . . . , ⇢n}⌦Z R[G]
✏G
�! Z,

where @(⇢i) = �̃i [15]. Using this resolution we see that Tor
R[G]

p (Z,Z) 'Vp
Z{⇢1, . . . , ⇢n} is a free Abelian group of rank

�
n
p

�
. Combining this with

K1(G/T ) = 0, we see that

Ep,q
2

'

⇢Vp
Z{⇢1, . . . , ⇢n} q = 0 (mod 2)

0 q = 1 (mod 2).

Thus E⇤,0
2

is torsion-free and has total rank 2n. This is the rank of H⇤(G),
hence also the rank of K⇤(G). It follows that there can be no non-trivial
di↵erentials in the spectral sequence beyond this point, so that Ep,q

2

' Ep,q
1 .

Since there is no torsion there is no obstruction to splitting the filtration
(2). Keeping track of even and odd degrees, we have shown that as abelian
groups:

K0(G) ' Z2

n�1
, K1(G) ' Z2

n�1
.

5. Multiplicative structure

The twisted Fourier-Mukai map T : K⇤(G/T ⇥ T̂ ,) ! K⇤�n(G) is not
a ring isomorphism. In fact, the twisted K-theory groups of a space with
non-trivial twisting class do not naturally carry a product. Instead we will
show how to equip K⇤(G/T ⇥ T̂ ,) with a convolution operation, which cor-
responds to the product on K⇤(G) under the Fourier-Mukai map.

As X̂ is a trivial T̂ -bundle, the group multiplication µ̂ : T̂ ⇥ T̂ ! T̂ on T̂
induces a fibrewise multiplication m̂ : X̂ ⇥M X̂ ! X̂. Since 1-forms on T̂ are
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primitive, we see that m̂⇤() ' ⇡⇤
1

()⌦⇡⇤
2

(), where ⇡
1

, ⇡
2

: X̂⇥M X̂ ! X̂ are
the projections to the first and second factors. Let � : ⇡⇤

1

()⌦⇡⇤
2

() ! m̂⇤()
be an isomorphism of twists.

Definition 5.1. Let P be a twisted Poincaré line bundle on X̂ ⇥M X. View
P as a trivialisation P : q⇤() ! 1 of q⇤(). We say that P is multiplicative if
there exists an isomorphism � : ⇡⇤

1

()⌦⇡⇤
2

() ! m̂⇤() for which the following
diagram commutes:

⇡⇤
13

(q⇤)⌦ ⇡⇤
23

(q⇤)

⇡⇤
13(P)⌦⇡⇤

23(P)

✏✏

⇡⇤
12(�) // (m̂⇥ id)⇤(q⇤)

(m̂⇥id)⇤(P)

✏✏
1

1 // 1

where ⇡
13

, ⇡
23

: X̂⇥M X̂⇥MX ! X̂⇥MX and ⇡
12

: X̂⇥M X̂⇥MX ! X̂⇥M X̂
are the projections onto the factors indicated.

Remark 5.2. One may view P as an element P 2 K0(X̂ ⇥M X, (q⇤)�1)
and � as an element � 2 K0(X̂ ⇥M X̂, m̂⇤⌦ (⇡⇤

1

)�1

⌦ (⇡⇤
2

)�1). Thus, we
obtain an element:

� = (m̂⇥ id)⇤(P)⌦ ⇡⇤
13

(P)�1

⌦ ⇡⇤
23

(P)�1

⌦ ⇡⇤
12

(�) (3)

in K0(X̂ ⇥M X̂ ⇥M X). In fact � is naturally a line bundle, since it is an
automorphism of the trivial twist. The twisted Poincaré line bundle P is
multiplicative if and only if there is a � such that � is the trivial line bundle.

Proposition 5.3. There exists a multiplicative twisted Poincaré line bundle
on X̂ ⇥M X.

Proof. First note that m̂⇤() ' ⇡⇤
13

()⌦ ⇡⇤
23

(), so certainly an isomorphism
� : m̂⇤() ! ⇡⇤

1

()⌦⇡⇤
2

() exists. Choose such an isomorphism. We obtain a
line bundle � on X̂ ⇥M X̂ ⇥M X given by Equation (3). From the definition
of T-duality, there exists a trivialisation ⌧ : |

ˆT ! 1 of  along the fibres
of X̂ such that on the fibres T̂ ⇥ T of X̂ ⇥M X, the trivialisations P and
q⇤(⌧) di↵er by the Poincaré line bundle P

0
! T̂ ⇥ T . Since X̂ is a trivial

torus bundle over M , any line bundle on the fibre T̂ ⇥ T̂ extends to a line
bundle on X̂ ⇥M X̂. Therefore we may assume that � restricted to the fibres
T̂ ⇥ T̂ is the isomorphism induced by ⌧ , namely (⇡⇤

1

(⌧) ⌦ ⇡⇤
2

(⌧))�1

� m̂⇤(⌧).
Then since the Poincaré line bundle is a multiplicative line bundle, it follows
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that � is trivial on the fibres T̂ ⇥ T̂ ⇥ T . Now since H1(M,Z) = 0, we have
that � is the pullback of a line bundle on M . Tensoring P by �, we obtain a
multiplicative twisted Poincaré line bundle.

Given a multiplicative twisted Poincaré line bundle P and corresponding
isomorphism � : ⇡⇤

1

() ⌦ ⇡⇤
2

() ! m̂⇤(), we define a convolution product
⇤ : Ki(X̂,) ⌦Kj(X̂,) ! Ki+j�n(X̂,) as follows. Let x 2 Ki(X̂,), y 2

Kj(X̂,). Take the external product x ⇥ y = ⇡⇤
1

(x) ⌦ ⇡⇤
2

(y) 2 Ki+j(X̂ ⇥M

X̂, ⇡⇤
1

()⌦ ⇡⇤
2

()) and set:

x ⇤ y = m̂⇤((x⇥ y)⌦ �).

Recall the Fourier-Mukai transform T : K⇤(G/T ⇥ T̂ ,) ! K⇤�n(G),
which we have defined by Equation (1).

Proposition 5.4. We have T (x ⇤ y) = T (x)⌦ T (y).

Proof. The proof is a direct calculation which closely parallels the corre-
sponding result in algebraic geometry [13]:

T (x ⇤ y) = p⇤(q
⇤(x ⇤ y)⌦ P)

= p⇤(q
⇤m̂⇤((x⇥ y)⌦ �)⌦ P)

= p⇤((m̂⇥ id)⇤⇡
⇤
12

((x⇥ y)⌦ �)⌦ P)

= p⇤((m̂⇥ id)⇤(⇡
⇤
12

(⇡⇤
1

(x)⌦ ⇡⇤
2

(y))⌦ ⇡⇤
12

(�)⌦ (m̂⇥ id)⇤(P)))

= p⇤((m̂⇥ id)⇤(⇡
⇤
12

(⇡⇤
1

(x)⌦ ⇡⇤
2

(y))⌦ ⇡⇤
12

(�)⌦ ⇡⇤
12

(�)�1

⌦ ⇡⇤
13

(P)⌦ ⇡⇤
23

(P)))

= p⇤((m̂⇥ id)⇤(⇡
⇤
12

(⇡⇤
1

(x)⌦ ⇡⇤
2

(y))⌦ ⇡⇤
13

(P)⌦ ⇡⇤
23

(P)))

= p⇤((m̂⇥ id)⇤(⇡
⇤
13

(q⇤(x))⌦ ⇡⇤
23

(q⇤(y))⌦ ⇡⇤
13

(P)⌦ ⇡⇤
23

(P)))

= p⇤((m̂⇥ id)⇤(⇡
⇤
13

(q⇤(x)⌦ P)⌦ ⇡⇤
23

(q⇤(y)⌦ P)))

= p⇤((⇡13)⇤(⇡
⇤
13

(q⇤(x)⌦ P)⌦ ⇡⇤
23

(q⇤(y)⌦ P)))

= p⇤((q
⇤(x)⌦ P)⌦ (⇡

13

)⇤(⇡
⇤
23

(q⇤(y)⌦ P)))

= p⇤((q
⇤(x)⌦ P)⌦ p⇤p⇤(q

⇤(y)⌦ P))

= p⇤(q
⇤(x)⌦ P)⌦ p⇤(q

⇤(y)⌦ P)

= T (x)⌦ T (y).

Since the Fourier-Mukai transform is an isomorphism, this shows that
K⇤�n(G/T ⇥ T̂ ,) equipped with the convolution product is a ring isomor-
phic to K⇤(G).
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It can be shown that the convolution ⇤ induces a multiplicative structure
on the Atiyah-Hirzebruch spectral sequence for the fibration G/T ⇥ T̂ ! T̂
(for instance, one can use the Chern character in twisted K-theory to pass to
twisted cohomology, where it is easier to describe convolution). This means
that ⇤ is compatible with the filtration on K⇤(G/T ⇥ T̂ ,) in the sense that
F p,k

⇤ F p0,k0
✓ F p+p0�n,k+k0 . It follows that there is an induced product on

the associated graded group Grp(Kq(G/T ⇥ T̂ ,)) ' Ep,q
1 ' Ep,q

2

. This is a
map of the form Ep,q

2

⌦ Ep0,q0

2

! Ep+p0�n,q+q0

2

. Since Ep,q
2

= 0 for odd q, we
are only concerned with the products Ep,0

2

⌦ Ep0,0
2

! Ep+p0�n,0
2

.

Let ⇢ : ⇡
1

(T̂ ) ! Aut(K⇤(G/T )) denote the monodromy representation of
the local system K(G/T ). For a space Z and a representation � : ⇡

1

(Z) !
Aut(K(G/T )), we write K(G/T )� for the corresponding local system on
Z. Thus K(G/T ) = K(G/T )⇢. Recall that Ep,0

2

= Hp(T̂ , K(G/T )⇢). The

product Ep,0
2

⌦Ep0,0
2

! Ep+p0�n,0
2

is then given by the following composition:

Hp(T̂ , K(G/T )⇢)⌦Hp0(T̂ , K(G/T )⇢)

p⇤1( · )`p⇤2( · )
✏✏

Hp+p0(T̂ ⇥ T̂ , K(G/T )p⇤1(⇢) ⌦K(G/T )p⇤2(⇢))

⇥
✏✏

Hp+p0(T̂ ⇥ T̂ , K(G/T )p⇤1(⇢)+p⇤2(⇢)
)

'
✏✏

Hp+p0(T̂ ⇥ T̂ , K(G/T )µ̂⇤
(⇢))

µ̂⇤
✏✏

Hp+p0�n(T̂ , K(G/T )⇢),

where p
1

, p
2

: T̂ ⇥ T̂ ! T̂ are the projections to the first and second factors
and ⇥ : K(G/T )p⇤1(⇢) ⌦ K(G/T )p⇤2(⇢) ! K(G/T )p⇤1(⇢)+p⇤2(⇢)

is the homomor-
phism of local systems given by the product on K(G/T ).

The convolution is easier to express by switching to Tor groups. Under
Poincaré duality ExtpR[T ]

(Z, K(G/T )) ' Tor
R[T ]

n�p (Z, K(G/T )), so the product

has the form Tor
R[T ]

p (Z, K(G/T ))⌦Tor
R[T ]

p0 (Z, K(G/T )) ! Tor
R[T ]

p+p0(Z, K(G/T )).
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To simplify the notation we let R = R[G], S = R[T ] and K = K(G/T )⇢
viewed as an S-module. We let ⇡

1

, ⇡
2

: S ⌦Z S ! S be given by ⇡
1

= id⌦ ✏,
⇡
2

= ✏ ⌦ id respectively. We also use m : S ⌦Z S ! S to denote the ring
multiplication in S. The ring structure on K(G/T ) defines a module ho-
momorphism ⇥ : ⇡⇤

1

(K) ⌦Z ⇡
⇤
2

(K) ! m⇤(K). In terms of Tor groups the
convolution product is given by the following composition:

TorSp (Z, K)⌦Z Tor
S
p0(Z, K)

⌦
✏✏

TorS⌦ZS
p+p0 (Z, ⇡⇤

1

(K)⌦Z ⇡
⇤
2

(K))

⇥
✏✏

TorS⌦ZS
p+p0 (Z,m⇤(K))

m⇤
✏✏

TorSp+p0(Z, K).

This is exactly the internal product of Tor groups [15].

Let ⇡
1

, ⇡
2

,m : R ⌦Z R ! R be defined as for S. Consider the following
diagram:

TorRp (Z,Z)⌦Z Tor
R
p0(Z,Z)

⌦
✏✏

// TorSp (Z, K)⌦Z TorSp0(Z, K)

⌦
✏✏

TorR⌦ZR
p+p0 (Z,Z)

m⇤

✏✏

// TorS⌦ZS
p+p0 (Z, ⇡⇤

1

(K)⌦Z ⇡
⇤
2

(K))

⇥
✏✏

TorS⌦ZS
p+p0 (Z,m⇤(K))

m⇤
✏✏

TorRp+p0(Z,Z) // TorSp+p0(Z, K)

(4)

where the horizontal arrows are the natural maps induced by the change of
ring spectral sequence for Tor groups.

Proposition 5.5. The diagram (4) is commutative.
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Proof. It is clear that the upper square in (4) commutes. What needs to
be shown is that the lower square also commutes. For this we consider the
commutative diagram of rings:

R⌦Z R
i⌦i //

m

✏✏

S ⌦Z S

m

✏✏
R

i // S

where i : R ! S is the natural inclusion. This commutative diagram in-
duces a map between the change of ring spectral sequences associated to
(i⌦ i) : R⌦ZR ! S⌦ZS and i : R ! S. Thus we get a commutative square:

TorR⌦ZR
p+p0 (Z,Z) //

m⇤
✏✏

TorS⌦ZS
p+p0 (Z, (S ⌦Z S)⌦R⌦ZR Z)

m⇤
✏✏

TorRp+p0(Z,Z) // TorSp+p0(Z, S ⌦R Z)

We claim that this square coincides with the lower square of (4). To see this,
write ⇡⇤

1

(K) ⌦Z ⇡
⇤
2

(K) as (S ⌦Z S) ⌦R⌦ZR Z. Then the map ⇥ : ⇡⇤
1

(K) ⌦Z
⇡⇤
2

(K) ! m⇤(K) is given by:

m⌦ id : (S ⌦Z S)⌦R⌦ZR Z ! S ⌦R Z.

Making these identifications, it follows that the two squares coincide as
claimed.

We have established that the convolution product on K⇤(G/T ⇥ T̂ ,)
coincides with the product on TorR⇤ (Z,Z) given by the left column of (4).
This is the internal product of Tor groups. Next, we determine the ring
structure of TorR⇤ (Z,Z).

Proposition 5.6. As a graded ring TorR⇤ (Z,Z) is isomorphic to an exterior
algebra

V⇤
Z{⇢1, . . . , ⇢n} over Z on n generators, where the ⇢i have degree 1.

Proof. This follows easily by taking the tensor product of two Koszul reso-
lutions for Z over R [15].

Corollary 5.7. The twisted K-theory K⇤�n(G/T ⇥ T̂ ,) with convolution
product is isomorphic to the exterior algebra

V⇤
Z{⇢1, . . . , ⇢n}.
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Proof. We have that K⇤�n(G/T⇥T̂ ,) admits a filtration for which the asso-
ciated graded ring, by Proposition 5.6, is an exterior algebra

V⇤
Z{⇢1, . . . , ⇢n}.

Since
V

1

Z{⇢1, . . . , ⇢n} ' F n�1,n�1

✓ Kn�1(G/T ⇥ T̂ ,), there are canonical
lifts ⇢̃

1

, . . . , ⇢̃n 2 Kn�1(G/T⇥T̂ ,) of ⇢
1

, . . . , ⇢n. Note thatK⇤�n(G/T⇥T̂ ,)
is a ring with identity as it is isomorphic to K⇤(G). For reasons of degree,
the identity must correspond to a generator of Z ' F n,n

✓ Kn(G/T ⇥ T̂ ,).
Comparing with the associated graded ring, it is clear that ⇢̃

1

, . . . , ⇢̃n together
with the identity generate the whole of K⇤�n(G/T ⇥ T̂ ,). The elements
⇢̃i anti-commute, since they map to elements of K1(G) under the Fourier-
Mukai transform. Thus K⇤�n(G/T ⇥ T̂ ,) is isomorphic to a quotient ofV⇤

Z{⇢̃1, . . . , ⇢̃n}. Any non-trivial quotient will have rank less than 2n, hence
we must have K⇤�n(G/T ⇥ T̂ ,) '

V⇤
Z{⇢1, . . . , ⇢n}.

This concludes our proof of Theorem 1.1.
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