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Abstract. In this paper we further develop the theory of equivariant Seiberg–

Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn

homology spheres. We obtain a number of applications. First, we show

that the knot concordance invariants θ(c) defined by the first author satisfy

θ(c)(Ta,b) = (a−1)(b−1)/2 for torus knots, whenever c is a prime not dividing

ab. Since θ(c) is a lower bound for the slice genus, this gives a new proof of

the Milnor conjecture. Second, we prove that a free cyclic group action on

a Brieskorn homology 3-sphere Y = Σ(a1, . . . , ar) does not extend smoothly

to any homology 4-ball bounding Y . In the case of a non-free cyclic group

action of prime order, we prove that if the rank of HF+
red(Y ) is greater than

p times the rank of HF+
red(Y/Zp), then the Zp-action on Y does not extend

smoothly to any homology 4-ball bounding Y . Third, we prove that for all

but finitely many primes a similar non-extension result holds in the case that

the bounding 4-manifold has positive definite intersection form. Finally, we

also prove non-extension results for equivariant connected sums of Brieskorn

homology spheres.

1. Introduction

In [5], we introduced the theory of equivariant Seiberg–Witten–Floer cohomology

and established its basic properties. In this paper we further develop this theory,

with a particular emphasis on Brieskorn homology spheres. Applications include

a new proof of the Milnor conjecture and obstructions to extending group actions

over a bounding 4-manifold.

For pairwise coprime positive integers a1, . . . , ar > 1, the Brieskorn manifold

Y = Σ(a1, . . . , ar) is an integral homology Seifert 3-manifold. The Seifert structure

defines a circle action on Y . Restricting the circle action to finite subgroups, we

obtain an action of the cyclic group Zp on Y for each integer p > 1. We obtain

our main results by considering the equivariant Seiberg–Witten–Floer cohomology

of Y with respect to such Zp-actions.

1.1. Knot concordance invariants and the Milnor conjecture. Let p be a

prime number. One way of producing Zp-actions on rational homology 3-spheres is

to take Y = Σp(K), the cyclic p-fold cover of S3 branched over a knot K. From the

equivariant Seiberg–Witten–Floer cohomology of Y one may extract invariants of

the knot K. In [4], this construction was used to obtain a series of knot concordance

invariants θ(p)(K). These invariants are lower bounds for the slice genus g4(K),
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that is, g4(K) ≥ θ(p)(K) for all primes p. More generally, the invariants θ(p) can be

used to bound the genus of surfaces bounding K in negative definite 4-manifolds

with S3 boundary.

We are interested in the case that K is a torus knot. If K = Ta,b is an (a, b)

torus knot and c is a prime not dividing ab, then Σc(Ta,b) is the Brieskorn homology

sphere Σ(a, b, c) and the Zc-action arising from the branched covering construction

coincides with the restriction to Zc of the Seifert circle action. By studying the

equivariant Seiberg–Witten–Floer homology of Σ(a, b, c), we deduce the following:

Theorem 1.1. Let a, b > 1 be coprime integers and let c be a prime not dividing

ab. Then θ(c)(Ta,b) =
1

2
(a− 1)(b− 1).

Since θ(c) is a lower bound for the slice genus, we obtain the Milnor conjecture

as an immediate corollary:

Corollary 1.2. Let a, b > 1 be coprime. Then g4(Ta,b) =
1

2
(a− 1)(b− 1).

Proof. The Milnor fibre of the singularity xa = yb has genus (a− 1)(b− 1)/2 [29],

hence g4(Ta,b) ≤ (a− 1)(b− 1)/2. On the other hand, if we let c be any prime not

dividing ab, then Theorem 1.1 gives g4(Ta,b) ≥ (a− 1)(b− 1)/2. □

The original proof of the Milnor conjecture due to Kronheimer and Mrowka

uses gauge theory and adjunction inequalities [18]. The result was proven again

by Ozsváth and Szabó using the τ -invariant of Knot Floer homology [34] and by

Rasmussen using the s-invariant of Khovanov homology [37]. Although our proof

uses gauge theory, it does not use adjunction inequalities but rather is based on

Floer theoretic methods. Thus our proof has more in common with Ozsváth–Szabó

and Rasmussen than with Kronheimer–Mrowka. It is interesting to note that our

proof, like those of Ozsváth–Szabó and Rasmussen, is based on finding a knot

concordance invariant which bounds the slice genus and equals (a− 1)(b− 1)/2 for

the torus knot Ta,b.

1.2. Equivariant delta invariants of Brieskorn homology spheres. Our next

result concerns the equivariant delta invariants of Brieskorn homology spheres. The

equivariant delta invariants, introduced in [5], are a certain equivariant generali-

sation of the Ozsváth–Szabó d-invariant and are equivariant homology cobordism

invariants. Given a rational homology 3-sphere Y , an action of Zp on Y by orien-

tation preserving diffeomorphisms and a Zp-invariant spin
c-structure s, we obtain

a sequence of invariants δ
(p)
j (Y, s) ∈ Q indexed by a non-negative integer j. We call

δ
(p)
j (Y, s) the equivariant delta invariants of (Y, s). When Y is an integral homology

3-sphere, it has a unique spinc-structure which is automatically Zp-invariant. In

this case we may write the invariants as δ
(p)
j (Y ). The most important property

of these invariants is that they satisfy an equivariant version of the Frøyshov in-

equality [5]. In particular, this implies that they are invariant under equivariant

homology cobordism. Consequently, the δ
(p)
j define obstructions to extending the

Zp-action over an integral or rational homology 4-ball bounding Y :
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Proposition 1.3 (Proposition 7.6, [5]). Let Y be an integral homology 3-sphere

on which Zp acts by orientation preserving diffeomorphisms. Suppose that Y is

bounded by a smooth integer homology 4-ball W . If the Zp-action extends smoothly

over W then δ
(p)
j (Y ) = δ

(p)
j (−Y ) = 0 for all j ≥ 0.

In fact, we can relax the assumption that W is an integer homology 4-ball to sim-

ply being a rational homology 4-ball provided that W admits a Zp-invariant spin
c-

structure. This is automatically true if p does not divide the order of H2(W ;Z),
for then Zp can’t act freely on the set of spinc-structures.

The sequence of invariants {δ(p)j (Y )}j≥0 is decreasing and eventually constant.

We set δ
(p)
∞ (Y ) = limj→∞ δ

(p)
j (Y ).

Let Y = Σ(a1, . . . , ar) be a Brieskorn homology sphere and let p be any prime.

We assume a1, . . . , ar > 1 and r ≥ 3 so that Y ̸= S3. In §3.3 we prove the following

results (see Proposition 3.6):

(1) δ
(p)
j (Y ) = δ

(p)
∞ (Y ) for all j ≥ 0.

(2) δ(Y ) ≤ δ
(p)
∞ (Y ) ≤ −λ(Y ).

(3) λ(Y ) ≤ δ
(p)
j (−Y ) ≤ −δ(Y ) for all j ≥ 0.

Here λ(Y ) is the Casson invariant of Y and δ(Y ) = d(Y )/2 is half the Ozsváth–

Szabó d-invariant. In particular, if Y is a Brieskorn homology sphere which bounds

a contractible 4-manifold, then δ(Y ) = 0, δ
(p)
j (Y ) = δ

(p)
∞ (Y ) and

δ(p)∞ (−Y ) ≤ δ
(p)
j (−Y ) ≤ 0

for all j ≥ 0. Thus δ
(p)
j (±Y ) = 0 for all j if and only if δ

(p)
∞ (±Y ) = 0. This justifies

restricting attention to the invariants δ
(p)
∞ (±Y ).

We first consider the case of free Zp-actions. Given a prime p, the restriction of

the Seifert circle action on Y = Σ(a1, . . . , ar) to Zp acts freely if and only if p does

not divide a1 · · · ar. Hence the action is free for all but finitely many primes. In

fact any free action of a finite group on Y is conjugate to a finite subgroup of the

Seifert circle action [27, Proposition 4.3]. In the free case we have:

Theorem 1.4. Let Y = Σ(a1, . . . , ar) be a Brieskorn homology sphere and let p be

a prime not dividing a1 · · · ar. Set Y0 = Y/Zp. Then for any spinc-structure s0 on

Y0, we have

δ(p)∞ (Y )− δ(Y ) = rk(HF+
red(Y ))− rk(HF+

red(Y0, s0)).

Furthermore, we have:

Theorem 1.5. We have that rk(HF+
red(Y )) > rk(HF+

red(Y0, s0)) except in the

following cases:

(1) Y = Σ(2, 3, 5) and p is any prime.

(2) Y = Σ(2, 3, 11) and p = 5.

In case (1) we have rk(HF+
red(Y )) = rk(HF+

red(Y0, s0)) = 0 and in case (2) we have

rk(HF+
red(Y )) = rk(HF+

red(Y0, s0)) = 1.

Combining these two results gives:
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Corollary 1.6. Let Y = Σ(a1, a2, . . . , ar) be a Brieskorn homology sphere and let

p be a prime not dividing a1 · · · ar. Then δ
(p)
∞ (Y ) > δ(Y ) except in the following

cases:

(1) Y = Σ(2, 3, 5) and p is any prime.

(2) Y = Σ(2, 3, 11) and p = 5.

In both cases we have δ
(p)
∞ (Y ) = δ(Y ) = 1.

Corollary 1.7. Let Y = Σ(a1, a2, . . . , ar) be a Brieskorn homology sphere and let

m > 1 be an integer not dividing a1 · · · ar. Suppose that W is smooth rational

homology 4-ball bounding Y and that m does not divide |H2(X;Z)|. Then the Zm-

action on Y does not extend smoothly to W .

Proof. Let p be a prime divisor of m which does not divide |H2(X;Z)|. It suffices

to show that the subgroup Zp ⊆ Zm does not extend over W . Since Y is bounded

by a rational homology 4-ball we have δ(Y ) = 0. Then Corollary 1.6 implies that

δ
(p)
∞ (Y ) > 0, unless Y = Σ(2, 3, 5) or Y = Σ(2, 3, 11) and p = 5. However these

cases do not bound rational homology 4-balls as they have δ(Y ) = 1. So δ
(p)
∞ (Y ) > 0

which implies that the Zp-action does not extend smoothly to W . □

The r = 3 case of the above result was proven by Anvari–Hambleton [2], under

the assumption that the bounding manifold is contractible. We note that there is a

conjecture that Brieskorn spheres with r > 3 can not bound contractible manifolds

(see, for example [40, Problem I]). On the other hand, there are many examples of

Brieskorn spheres which bound rational homology balls, but not integer homology

balls [14, 1, 39]. Thus Corollary 1.7 is a non-trivial result.

We can also show that for all sufficiently large primes, δ
(p)
∞ (Y ) equals minus the

Casson invariant −λ(Y ).

Theorem 1.8. Let Y = Σ(a1, a2, . . . , ar) be a Brieskorn homology sphere and let

p be a prime not dividing a1 · · · ar. Suppose that p > N where

N = a1 · · · ar

(
(r − 2)−

r∑
i=1

1

ai

)
.

Then δ
(p)
∞ (Y ) = −λ(Y ).

Proof. This follows from Theorem 1.4 and Proposition 6.2. □

We now consider the case of branched coverings. Let Y = Σ(a1, . . . , ar) be a

Brieskorn homology sphere and let p be a prime dividing a1 · · · ar. Without loss of

generality we may assume that p divides a1. Then the quotient space Y0 = Y/Zp is

the Brieskorn homology sphere Σ(a1/p, a2, . . . , ar) and Y → Y0 is a cyclic branched

covering. Our main result is the following:

Theorem 1.9. We have that

δ(−Y )− δ(p)∞ (−Y ) ≥ rk(HF+
red(Y ))− p rk(HF+

red(Y0)).
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Remark 1.10. Karakurt–Lidman have shown that rk(HF+
red(Y )) ≥ p rk(HF+

red(Y0)).

Thus the right hand side of the inequality in Theorem 1.9 is non-negative. More-

over, if δ
(p)
∞ (−Y ) = δ(−Y ) then we must have an equality: rk(HF+

red(Y )) =

p rk(HF+
red(Y0)).

Theorem 1.11. Let Y = Σ(a1, a2, . . . , ar) be a Brieskorn homology sphere and

let p be a prime dividing a1 · · · ar. Suppose that W is a rational homology 4-ball

bounding Y and that p does not divide the order of H2(W ;Z). If rk(HF+
red(Y )) >

p rk(HF+
red(Y0)), then the Zp-action on Y does not extend smoothly to W .

The r = 3 case of this result was proved by Anvari–Hambleton [3] (in the

integral homology case) without requiring the assumption that rk(HF+
red(Y )) >

p rk(HF+
red(Y0)).

We expect that the condition rk(HF+
red(Y )) = p rk(HF+

red(Y0)) is rarely satis-

fied, however there are some cases where it does hold. One family of examples

is given by Y = Σ(2, 3, 30n + 5) and p = 5, in which case Y0 = Σ(2, 3, 6n + 1)

and rk(HF+
red(Y )) = 5 rk(HF+

red(Y0)) = 5n. All of these examples have δ(Y ) = 1,

so such a Y can not bound a contractible 4-manifold. We suspect that there are

no examples where rk(HF+
red(Y )) = p rk(HF+

red(Y0)) and Y bounds an integral

homology 4-ball.

1.3. Non-extension results for positive definite 4-manifolds. Our equivari-

ant δ-invariants can also be used to obstruct the extension of the Zp-action over a

positive definite 4-manifold bounding Y . First, we have the following result, which

is a consequence of [5, Theorem 5.3]:

Proposition 1.12. Let Y be an integral homology 3-sphere on which Zp acts by

orientation preserving diffeomorphisms. Suppose that Y is bounded by a smooth,

compact, oriented, 4-manifold W with positive definite intersection form and with

b1(W ) = 0. Suppose that the Zp extends to a smooth, homologically trivial action

on W . Then

min
c

{
c2 − rk(H2(W ;Z))

8

}
≥ δ

(p)
0 (Y )

where the minimum is taken over all characteristic elements of H2(W ;Z).

Proof. Suppose Zp extends smoothly and homologically trivially to W . Take any

characteristic c ∈ H2(X;Z). Then there is a unique spinc-structure s with s = c.

Since the action is homologically trivial it follows that s is Zp-invariant. Now we

apply [5, Theorem 5.3] to −W with Y regarded as an ingoing boundary to obtain:

(c2 − rk(H2(W ;Z)))/8 ≥ δ
(p)
0 (Y ). Taking the minimum over all characteristics

gives the result. □

Corollary 1.13. Let W and Y be as in Proposition 1.12. If δ
(p)
0 (Y ) > 0 or

δ
(p)
∞ (−Y ) < 0. Then the Zp-action on Y does not extend smoothly and homologically

trivially to W .

Proof. First note that δ
(p)
0 (Y ) + δ

(p)
∞ (−Y ) ≥ δ

(p)
∞ (Y ) + δ

(p)
∞ (−Y ) ≥ 0 [5]. So if

δ
(p)
∞ (−Y ) < 0, then δ

(p)
0 (Y ) > 0. So we can assume that δ

(p)
0 (Y ) > 0. If the
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Zp-action extends smoothly and homologically trivially to W , then

min
c

{
c2 − rk(H2(W ;Z))

8

}
≥ δ

(p)
0 (Y ) > 0.

But Y is an integral homology 3-sphere, so H2(W ;Z) is a unimodular integral

lattice. A result of Elkies [13] implies that minc{(c2 − rk(H2(W ;Z)))/8} ≤ 0,

which is a contradiction. □

Combined with our calculation of δ0(Y ), δ∞(−Y ) for Brieskorn spheres, we ob-

tain the following non-extension result:

Corollary 1.14. Let Y = Σ(a1, . . . , ar) be a Brieskorn homology sphere and p any

prime. If δ∞(Y ) > 0 or δ∞(−Y ) > 0, then the Zp-action on Y does not extend

smoothly and homologically trivial to any smooth, compact, oriented, 4-manifold W

with positive definite intersection form and with b1(W ) = 0 bounding Y .

In particular, if p does not divide a1 · · · ar and p > N = a1 · · · ar
(
(r − 2)−

∑r
i=1

1
ai

)
,

then δ∞(Y ) = −λ(Y ) > 0 by Theorem 6.4. Hence for a given Y , the above non-

extension result applies to all but finitely many primes.

Note that such a non-extension result does not exist if W has a negative definite

intersection form. Indeed for any p, the Zp-action on Y extends smoothly and

homologically trivially to any negative definite star-shaped plumbing bounding Y

[33, §2].

1.4. Non-extension results for connected sums. Suppose that Y1, . . . , Ym are

Brieskorn homology spheres and p is a prime such that for each i, the Zp-action on

Yi is not free. Then we can form an equivariant connected sum Y = Y1# · · ·#Ym

by attaching the summands to each other along fixed points. From [4, Proposition

3.1] we have that δ
(p)
j1+···+jm

(−Y ) ≤
∑m

k=1 δ
(p)
jk

(−Yk). Taking j1, . . . , jm sufficiently

large, we obtain

δ(p)∞ (−Y ) ≤
m∑

k=1

δ(p)∞ (−Yk).

Then Theorem 1.9 implies that

(1.1) δ(−Y )− δ(p)∞ (−Y ) ≥
m∑

k=1

(
rk(HF+

red(Yk))− p rk(HF+
red(Yk/Zp))

)
,

which gives us the following result:

Corollary 1.15. Let Y1, . . . , Ym be Brieskorn homology spheres and let p be a

prime such that for each i, the Zp-action on Yi is not free. Let Y = Y1# · · ·#Ym

be the equivariant connected sum. Suppose that W is a rational homology 4-ball

bounding Y and that p does not divide the order of H2(W ;Z). If rk(HF+
red(Yi)) >

p rk(HF+
red(Yi/Zp)) for some i, then the Zp-action on Y does not extend smoothly

to W .

Corollary 1.13 and (1.1) also give us a non-extension result over positive-definite

4-manifolds:
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Corollary 1.16. Let Y1, . . . , Ym be Brieskorn homology spheres and let p be a

prime such that for each i, the Zp-action on Yi is not free. Let Y = Y1# · · ·#Ym be

the equivariant connected sum. Suppose that W is a smooth, compact, oriented, 4-

manifold bounding Y , with positive definite intersection form and with b1(W ) = 0.

If

δ(Y ) +

m∑
k=1

(
rk(HF+

red(Yk))− p rk(HF+
red(Yk/Zp))

)
> 0

then the Zp-action on Y does not extend smoothly and homologically trivially to W .

1.5. Structure of the paper. The paper is structured as follows. In §2 we recall

the basic results on equivariant Seiberg–Witten–Floer cohomology from [5] and

the associated knot concordance invariants. In §3 we examine in great detail the

spectral sequence relating equivariant and non-equivariant Floer cohomology and

use this to deduce more refined information about the equivariant delta invariants.

In §4, we study the Floer homology of Brieskorn spheres Σ(a, b, c) and use this to

compute the invariants θ(c)(Ta,b) leading to the proof of Theorem 1.1. In §5, we

consider the case where Zp acts non-freely on Σ(a1, . . . , ar) and prove Theorem 1.9.

Finally in §6, we consider the case where Zp acts freely on Σ(a1, . . . , ar) and prove

Theorems 1.4, 1.5 and 6.4.

2. Equivariant Seiberg–Witten–Floer cohomology and knot

concordance invariants

2.1. Seiberg–Witten–Floer cohomology. Let Y be a rational homology 3-sphere

and s a spinc-structure. For such a pair (Y, s), Manolescu constructed an S1-

equivariant stable homotopy type whose equivariant (co)homology groups are iso-

morphic to the Heegaard Floer or Monopole Floer (co)homology groups of (Y, s)

[28]. We denote the S1-equivariant reduced cohomology groups with coefficients in

F by HSW ∗(Y, s;F) and refer to them as the Seiberg–Witten–Floer cohomology of

(Y, s). If the coefficient group is understood then we will write HSW ∗(Y, s). If Y

is an integral homology 3-sphere, then it has a unique spinc-structure and in this

case we simply write HSW ∗(Y ). We have that HSW ∗(Y, s) is a graded module

over the ring H∗
S1 = H∗

S1(pt;F). Note that H∗
S1

∼= F[U ], where deg(U) = 2.

There exists a chain of isomorphisms relating Seiberg–Witten–Floer homology

to monopole Floer homology [25] and to Heegaard Floer homology [19, 20, 21, 22,

23, 7, 8, 9, 41]. In particular we have isomorphisms

HSW ∗(Y, s) ∼= HF ∗
+(Y, s)

whereHF ∗
+(Y, s) denotes the plus version of Heegaard Floer cohomology with coeffi-

cients in F. Unless stated otherwise, we will take our coefficient group F to be a field.

Then the universal coefficient theorem implies that the Heegaard Floer cohomology

HF ∗
+(Y, s) is isomorphic to the Heegaard Floer homology HF+

∗ (Y, s), except that

the action of F[U ] on HF+
∗ (Y, s) gets replaced by its dual, so deg(U) = 2 whereas

in Heegaard Floer homology one has deg(U) = −2. We will frequently identify

HSW ∗(Y, s) with HF+
∗ (Y, s), equipped with the dual F[U ]-module structure.
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Let d(Y, s) denote the Ozsváth–Szabó d-invariant. Due to the isomorphism

HSW ∗(Y, s) ∼= HF+
∗ (Y, s), we have that d(Y, s) is the minimal degree i for which

there exists an x ∈ HSW i(Y, s) with Ukx ̸= 0 for all k ≥ 0. For notational

convenience we define δ(Y, s) = d(Y, s)/2.

We define HSW ∗
red(Y, s) = {x ∈ HSW ∗(Y, s) | Ukx = 0 for some k ≥ 0}. More

generally, given an F[U ]-module M , we write Mred for the submodule of elements

x ∈ M such that Ukx = 0 for some k ≥ 0.

Recall that for any (Y, s), there is an isomorphism of F[U ]-modules

HF+(Y, s) ∼= F[U ]d(Y,s) ⊕HF+
red(Y, s),

where for any F[U ]-module M∗ and any d ∈ Q, we define M∗
d by (M i

d) = M i−d. It

follows that we similarly have an isomorphism

HSW ∗(Y, s) ∼= F[U ]d(Y,s) ⊕HSWred(Y, s).

2.2. Equivariant Seiberg–Witten–Floer cohomology. Let Y be a rational

homology 3-sphere and suppose that τ : Y → Y an orientation preserving dif-

feomorphism of order p, where p is prime. This gives an action of the finite

group G = Zp on Y generated by τ . Let s be a spinc-structure preserved by

τ . In [5], the authors constructed the equivariant Seiberg–Witten–Floer cohomol-

ogy groups HSW ∗
G(Y, s). Except where stated otherwise, we take Floer cohomol-

ogy with respect to the coefficient field F = Zp. Then HSW ∗
G(Y, s) is a module

over the ring H∗
S1×G = H∗

S1×G(pt;F). If p = 2, then H∗
S1×G

∼= F[U,Q], where

deg(U) = 2, deg(Q) = 1. If p is odd, then H∗
S1×G

∼= F[U,R, S]/(R2), where

deg(U) = 2, deg(R) = 1, deg(S) = 2. As in the non-equivariant case, the grading

on HSW ∗
G(Y, s) can in general take rational values. However, if Y is an integral

homology sphere then the grading is integer-valued.

The localisation theorem in equivariant cohomology implies that the localisa-

tion U−1HSW ∗
G(Y, s) is a free U−1H∗

S1×G-module of rank 1. Letting µ denote a

generator of U−1HSW ∗
G(Y, s), we have an isomorphism of the form

ι : U−1HSW ∗
G(Y, s) → F[Q,U,U−1]µ

for p = 2 and

ι : U−1HSW ∗
G(Y, s) →

F[R,S, U, U−1]

(R2)
µ

for p odd. Following [5, §3] we define a sequence of equivariant δ-invariants as

follows. The cases p = 2 and p ̸= 2 need to be treated separately. First suppose

p = 2. For each j ≥ 0, we define δ
(p)
j (Y, s, τ) to be i/2 − j/2, where i is the least

degree for which there exists an element x ∈ HSW i
G(Y, s) and a k ∈ Z such that

ιx = QjUkµ (mod Qj+1).

If p ̸= 2, then for each j ≥ 0, we define δ
(p)
j (Y, s, τ) to be i/2 − j, where i is the

least degree for which there exists an element x ∈ HSW i
G(Y, s) and a k ∈ Z such

that

ιx = SjUkµ (mod Sj+1, RSj).
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When the diffeomorphism τ is understood we will omit it from the notation and

simply write the delta invariants as δ
(p)
j (Y, s).

Various properties of the δ-invariants are shown in [5]. In particular, we have:

(1) δ
(p)
0 (Y, s) ≥ δ(Y, s), where δ(Y, s) = d(Y, s)/2 and d(Y, s) is the Ozsváth–

Szabó d-invariant.

(2) δ
(p)
j+1(Y, s) ≤ δ

(p)
j (Y, s) for all j ≥ 0.

(3) The sequence {δ(p)j (Y, s)}j≥0 is eventually constant.

Using property (3), we may define two additional invariants of (Y, s, τ) as follows.

We define δ
(p)
∞ (Y, s, τ) = limj→∞ δ

(p)
j (Y, s, τ) and we define j(p)(Y, s, τ) to be the

smallest j such that δ
(p)
j (Y, s, τ) = δ

(p)
∞ (Y, s, τ). If τ is understood we will simply

write δ
(p)
∞ (Y, s) and j(p)(Y, s).

2.3. Knot concordance invariants. Given a knot K ⊂ S3 and a prime number

p, we let Y = Σp(K) denote the degree p cyclic cover of S3 branched over K.

Then Y is a rational homology 3-sphere [26, Corollary 3.2] and it comes equipped

with a natural Zp-action. Let π : Y → S3 denote the covering map. From [16,

Corollary 2.2], any spinc-structure on Y \ π−1(K) uniquely extends to Y . Then

sinceH2(S3\K;Z) = 0, there is a unique spinc-structure on S3\K. The pullback of

this spinc-structure under π extends uniquely to a spinc-structure on Y . Following

[16], we denote this spinc-structure by s0 = s0(K, p). Uniqueness of the extension

implies that s0 is Zp-invariant. Thus for any prime p and any j ≥ 0, we obtain a

knot invariant δ
(p)
j (K) by setting

δ
(p)
j (K) = 4δ

(p)
j (Σp(K), s0).

The invariants δ
(p)
j (K) are knot concordance invariants and they satisfy a number

of properties [5], [4]. In particular, for p = 2 we have:

(1) δ
(2)
0 (K) ≥ δ(2)(K), where δ(2)(K) is the Manolescu–Owens invariant [30].

(2) δ
(2)
j+1(K) ≤ δ

(2)
j (K) for all j ≥ 0.

(3) δ
(2)
j (K) ≥ −σ(K)/2 for all j ≥ 0 and δ

(2)
j (K) = −σ(K)/2 for j ≥ g4(K)−

σ(K)/2.

Here g4(K) is the slice genus of K and σ(K) is the signature. Similarly for p ̸= 2,

we have:

(1) δ
(p)
0 (K) ≥ δ(p)(K), where δ(p)(K) is the Jabuka invariant [16].

(2) δ
(p)
j+1(K) ≤ δ

(p)
j (K) for all j ≥ 0.

(3) δ
(p)
j (K) ≥ −σ(p)(K)/2 for all j ≥ 0 and δ

(p)
j (K) = −σ(p)(K)/2 for 2j ≥

(p− 1)g4(K)− σ(p)(K)/2.

Here σ(p)(K) is defined as

σ(p)(K) =

p−1∑
j=1

σK(e2πij/p),
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where σK(ω) is the Levine–Tristram signature of K. Define j(p)(K) to be the

smallest j such that δ
(p)
j (K) attains its minimum. Thus

j(p)(K) = j(p)(Σp(K), s0).

From property (3), we see that the minimum value of δ
(2)
j (K) is precisely −σ(K)/2

and that

j(2)(K) ≤ g4(K)− σ(K)/2.

This can be re-arranged into a lower bound for the slice genus:

g4(K) ≥ j(2)(K) +
σ(K)

2
.

Similarly for p ̸= 2, the minimum value of δ
(p)
j (K) is −σ(p)(K)/2 and that

2j(p)(K) ≤ (p− 1)g4(K)− σ(p)(K)

2
.

This can be re-arranged to

g4(K) ≥ 2j(p)(K)

(p− 1)
+

σ(p)(K)

2(p− 1)
.

Replacing K by its mirror −K, we obtain the following slice genus bounds:

g4(K) ≥ j(2)(−K)− σ(K)

2

for p = 2, and

g4(K) ≥ 2j(p)(−K)

(p− 1)
− σ(p)(K)

2(p− 1)

for p ̸= 2. Following [4], we define knot concordance invariants θ(p)(K) for all

primes p by setting

θ(2)(K) = max

{
0, j(2)(−K)− σ(K)

2

}
for p = 2, and

θ(p)(K) = max

{
0,

2j(p)(−K)

(p− 1)
− σ(p)(K)

2(p− 1)

}
for p ̸= 2. Then we have the slice genus bounds g4(K) ≥ θ(p)(K) for all p.

3. Further properties of the delta invariants

In this section we will use the spectral sequence of [5] relating equivariant and

non-equivariant Seiberg–Witten–Floer cohomologies in order to deduce more pre-

cise information on the δ-invariants. In particular, we will be able to determine the

value of j(p)(Y ) under certain assumptions on the Floer homology of Y .
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3.1. Spectral sequence. Let Y be a rational homology 3-sphere and τ : Y → Y an

orientation preserving diffeomorphism of prime order p. Let s be a spinc-structure

preserved by τ . Let the coefficient group be F = Zp and let G = ⟨τ⟩ = Zp.

Recall that H∗
G is isomorphic to F[Q], where deg(Q) = 1 if p = 2 and is isomor-

phic to F[R,S]/(R2) where deg(R) = 1, deg(S) = 2 if p is odd. Thus in either case

we have Hev
G

∼= F[S], where in the p = 2 case we set S = Q2.

Let {Ep,q
r , dr} denote the spectral sequence for theG-equivariant Seiberg–Witten–

Floer cohomology HSW ∗
G(Y, s) [5, Theorem 3.2]. In detail, this means there is a

filtration {F∗
j }j≥0 on HSW ∗

G(Y, s) such that E∞ is isomorphic to the associated

graded group

E∞ ∼= Gr(HSW ∗
G(Y, s)) =

⊕
j≥0

F∗
j /F∗

j+1

as H∗
S1×G-modules. In terms of bigrading this means that Ep,q

∞
∼= Fp+q

p /Fp+q
p+1 .

Furthermore, we have that

Ep,q
2 = Hp(Zp;HSW q(Y, s)).

3.2. Behaviour of the delta invariants. Let (Y, s, τ) be as in Section 3.1. We

will examine the spectral sequence {Ep,q
r } to deduce some properties of the delta

invariants {δ(p)j (Y, s)}.
To simplify notation, we will set Hi = HSW i(Y, s) and Ĥi = HSW i

G(Y, s).

Let d = d(Y, s) and δ = d/2. We will make the assumption that Hi = 0 unless

i = d (mod 2). This assumption is satisfied if Y is a Seifert homology sphere

oriented so that −Y is the boundary of a negative definite plumbing.

Lemma 3.1. If p = 2 and if HSW ∗(Y, s) is concentrated in degrees equal to d(Y, s)

mod 2, then for all j ≥ 0 we have δ
(2)
2j+1(Y, s) = δ

(2)
2j (Y, s).

Proof. Adapting the proof of [5, Lemma 5.7] to the p = 2 case, one can show that

Q : Ep,q
∞ → Ep+1,q

∞ is surjective for all p, q. This implies that Q : Fj → Fj+1 is

surjective. Now let x ∈ HSW i
Z2
(Y, s) satisfy ιx = Q2j+1Ukµ (mod Q2j+2) for some

k and assume that x has the minimal possible degree, so

δ
(2)
2j+1(Y, s) = deg(x)/2− (2j + 1)/2 = i/2− j − 1/2.

Note that since deg(Q) = 1, deg(U) = 2, we have that deg(x) = 1+d(Y, s) (mod 2).

This means that the image of x in HSW i
Z2
(Y, s)/F1 = E0,q

∞ is zero, because E0,q
∞ ⊆

E0,q
2 = H0(Z2;HSW q(Y, s)) is concentrated in degrees equal to d(Y, s) mod 2.

Hence x ∈ F1. This implies that x = Qy for some y ∈ HSW i−1
Z2

(Y, s). Then since

x = Qy, we have

ιx = Qιy = Q2j+1Ukµ (mod Q2j+2).

Moreover, Q is injective on U−1HSW ∗
Z2
(Y, s) ∼= F[Q,U,U−1], so we deduce that

ιy = Q2jUkµ (mod Q2j+1).

Therefore, from the definition of δ
(2)
2j (Y, s), it follows that

δ
(2)
2j (Y, s) ≤ deg(y)/2− j = deg(x)/2− 1/2− j = δ

(2)
2j+1(Y, s).
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But we always have δ
(2)
2j+1(Y, s) ≤ δ

(2)
2j (Y, s), so we must have an equality δ

(2)
2j (Y, s) =

δ
(2)
2j+1(Y, s). □

Remark 3.2. By Lemma 3.1, if p = 2 and HSW ∗(Y, s) is concentrated in degrees

equal to d(Y, s) mod 2, then j(2)(Y, s) is even.

In what follows, we find it more convenient to consider not the whole equivariant

Seiberg–Witten–Floer cohomology but only the part concentrated in degrees equal

to d(Y, s) mod 2. For this reason we consider even counterparts of the relevant

ingredients, such as the spectral sequence and filtration. One advantage is that it

allows us to treat the p = 2 and p ̸= 2 cases simultaneously.

Let Hev
S1×G denote the subring of H∗

S1×G given by elements of even degree. Then

Hev
S1×G

∼= F[U, S]. Let Ĥev denote the Hev
S1×G-submodule of Ĥ∗ given by elements

of degree equal to d mod 2. The filtration {F∗
j } defines a filtration {Fev

j } on Ĥev,

where Fev
j = F2j ∩ Ĥev. The associated graded Hev

S1×G-module of this filtration is

isomorphic to

Eev
∞ =

⊕
p,q

E2p,q
∞ .

By [5, Lemma 5.7], the map S : E2p,q
∞ → E2p+2,q

∞ is surjective for all p, q. It

follows that S : Fev
j → Fev

j+1 is surjective for each j ≥ 0. In particular, since

Fev
0 = Ĥev, we see that Fev

j = SjĤev.

Recall the localisation isomorphism

ι : U−1Ĥ∗ ∼= H∗
G[U,U

−1]µ

for some µ. Restricting to Ĥev, we get a localisation isomorphism

ι : U−1Ĥev ∼= Hev
G [U,U−1]µ ∼= F[S,U, U−1]µ.

Let δj denote δ
(p)
j (Y, s) if p is odd and δ

(2)
2j (Y, s) if p = 2. Since S = Q2 in the p = 2

case, it follows that regardless of whether p is even or odd, we have δj = a/2 − j,

where a is the least degree such that there exists an element x ∈ Ĥa with

ιx = SjUkµ (mod Sj+1)

for some k ∈ Z.
Observe that E0,q

2 = H0(Zp;H
q) is a submodule of Hq. Then since E0,q

r+1 is a

submodule of E0,q
r for each r ≥ 2, we see that E0,∗

∞ = Fev
0 /Fev

1 can be identified

with an F[U ]-submodule of H∗. We will denote this submodule by J∗ ⊂ H∗. Now

since H∗ ∼= F[U ]λ ⊕ H∗
red, where λ has degree d and H∗

red = {x ∈ H∗ | Umx =

0 for some m ≥ 0}. It follows that J∗ ∼= F[U ]θ ⊕ J∗
red, where θ has degree at least

d and J∗
red ⊆ H∗

red. Since Umθ ̸= 0 for all m ≥ 0, we see that the image of θ under

the localisation map ι is non-zero. More precisely,

ιθ = Uαµ (mod S)

for some α ∈ Z. On the other hand, any x ∈ J∗ has Umx = 0 (mod Fev
1 ) for some

m ≥ 0. This means that Umx = Sy for some y and thus ιx is a multiple of S. It

follows that deg(θ) = δ0.
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By [5, Proposition 3.14], we then have that δj = a/2 − j, where a is the least

degree such that there exists an element x ∈ Ĥa such that

Umx = SjUkθ (mod Fev
j+1)

for some m, k ≥ 0.

Consider again the sequence δ0 ≥ δ1 ≥ δ2 ≥ · · · . This sequence is eventually

constant, hence there exists a finite set of indices 0 < j1 < j2 < · · · < jr such that

for each j > 0, δj < δj−1 if and only if j = ji for some i. We let ni = δji−1
− δji > 0

for 1 < i ≤ r and n1 = δj1 − δ0 for i = 1. Thus δji = δ0 − (n1 + · · ·+ ni).

Lemma 3.3. There exists x1, . . . , xr ∈ J∗
red such that:

(1) The set {Uaxi | 1 ≤ i ≤ r, 0 ≤ a ≤ ni − 1} is linearly independent over F.
In particular, Uaxi ̸= 0 for a < ni.

(2) We have δji = deg(xi)/2− ji.

(3) Each xi has a lift to an element yi ∈ Ĥi satisfying

Umiyi = SjiUkiθ (mod Fev
ji+1)

for some mi, ki ≥ 0.

Proof. By the definition of δji , there exists yi ∈ Ĥ∗ such that δji = deg(yi)/2− ji
and Umiyi = SjiUkiθ (mod Fev

ji+1) for some mi, ki. Let xi ∈ H∗ be the image of

yi under the natural map Ĥev → Ĥev/Fev
1

∼= J∗. We claim that xi ∈ J∗
red. If not,

then xi = cUkθ+w for some c ∈ F∗, k ≥ 0 and w ∈ J∗
red. Then Umxi = cUk+mθ for

some m, k ≥ 0 and hence Umyi = cUk+mθ (mod Fev
1 ). This contradicts Umiyi =

SjiUkiθ (mod Fev
ji+1) as SjiUkiθ = 0 (mod Fev

1 ) (since ji > 0). So xi ∈ J∗
red. It

is now evident that (2) and (3) are satisfied. We claim that (1) also holds, that is,

the set {Uaxi | 1 ≤ i ≤ r, 0 ≤ a ≤ ni − 1} is linearly independent over F.
Suppose we have a non-trivial linear relation amongst elements of B = {Uaxi | 1 ≤

i ≤ r, 0 ≤ a ≤ ni − 1} of degree s. So∑
i

ciU
βixi = 0

for some ci ∈ F, not all zero and βi = (s − deg(xi))/2. Furthermore, the sum is

restricted to those i such that 0 ≤ βi ≤ ni−1 (so that Uβixi belongs to B). Lifting
this to Ĥev, we have

∑
i ciU

βiyi ∈ Fev
1 and hence

(3.1)
∑
i

ciU
βiyi = Sw

for some w ∈ Ĥs−2. Let u be the smallest value of i such that cu ̸= 0. Multiplying

by a sufficiently large power of U and taking the result modulo Fev
ju+1, we see that

SUmw = ciS
juU bθ (mod Fev

ju+1)

for some m, b ≥ 0. Hence Sι(Umw) = Sι(ciS
ju−1U bθ) (mod Sju+1), where ι is

the localisation map. Since S is injective on F[S,U, U−1]µ, we also have ιw =

ciS
ju−1U b−mιθ (mod Sju). Now we recall that ιθ = Uαµ (mod S) for some α,

hence ι(c−1
i w) = Sju−1U b−m+αµ (mod Sju). By the definition of δju−1, we must

therefore have deg(w)/2 ≥ δju−1 + (ju − 1). But deg(w) = s− 2, so s ≥ δju−1 + ju.
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On the other hand, equating degrees in Equation (3.1) gives s = βu + deg(xu)/2 =

βu + δju + ju. This gives

βu = s− δju − ju ≥ δju−1 − δju = nu.

But this contradicts βu ≤ nu − 1. So no such linear relation can exist. □

Corollary 3.4. We have that δ0 − δj ≤ dimF(J
∗
red) ≤ dimF(HF ∗

red(Y, s)) for all

j ≥ 0.

Proof. Since δj = δjr for all j ≥ jr, we have that δ0 − δj ≤ δ0 − δjr for all j. But

the subspace spanF{Uaxi | 1 ≤ i ≤ r, 0 ≤ a ≤ ni − 1} ⊆ J∗ of Lemma 3.3 has

dimension n1 + · · ·+ nr = δ0 − δjr . □

Let j′(Y, s) denote the smallest j such that δj attains its minimum. Thus

j′(Y, s) = j(p)(Y, s) if p is odd and j′(Y, s) = j(2)(Y, s)/2 if p = 2, by Remark

3.2.

Proposition 3.5. Let Y be a rational homology 3-sphere, τ : Y → Y an orientation

preserving diffeomorphism of order p, where p is prime. Let s be a spinc-structure

preserved by τ . Suppose that the following conditions hold:

(1) HF+(Y, s) is non-zero only in degrees i = d(Y, s) (mod 2).

(2) δ0 − δj = dimF(HF ∗
red(Y, s)) for some j ≥ 0.

(3) HF ∗
red(Y, s) ̸= 0.

(4) Let ℓ+(Y, s) denote the highest non-zero degree in HF+
red(Y, s). Any non-

zero element in the image of U : HF+
red(Y, s) → HF+

red(Y, s) has degree

strictly less than ℓ+(Y, s).

Then

j′(Y, s) = ℓ+(Y, s)/2− δ0(Y, s) + dimF(HF ∗
red(Y, s)).

Moreover, if Y is an integral homology sphere and δ(Y ) ∈ 2Z, then

j′(Y ) = ℓ+(Y )/2− δ0(Y ) + δ(Y ) + λ(Y ),

where λ(Y ) is the Casson invariant of Y .

Proof. Let x1, . . . , xr ∈ J∗
red be as in Lemma 3.3. It follows that j′(Y, s) = jr.

Choose j such that δ0 − δj = dimF(HF ∗
red(Y, s)). From Corollary 3.4, we have

dimF(HF ∗
red(Y, s)) = δ0−δj ≤ δ0−δjr = n1+· · ·+nr ≤ dimF(J

∗
red) ≤ dimF(HF ∗

red(Y, s)).

It follows that we must have equalities throughout. So δ0 − δjr = n1 + · · · + nr =

dimF(HF ∗
red(Y, s)). So {Uaxi | 1 ≤ i ≤ r, 0 ≤ a ≤ ni−1} is a basis for HF ∗

red(Y, s).

Set αi = deg(xi)/2. Lemma 3.3 (2) implies that δji = αi− ji for 1 ≤ i ≤ r. Setting

α0 = δ0 and j0 = 0, we also have δji = αi − ji for i = 0. Further, we have that

δji − δji−1
= ni for 1 ≤ i ≤ r. Hence we obtain (αi +ni − 1)−αi−1 = ji − ji−1 − 1.

But ji > ji−1, so ji − ji−1 − 1 ≥ 0, giving

(3.2) (αi + ni − 1) ≥ αi−1.

Now we observe that 2(αi + ni − 1) is the degree of Uni−1xi and 2αi−1 is the

degree of αi−1. Consider the space A = HF
ℓ+(Y,s)
red (Y, s) of top degree elements
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in HF+
red(Y, s). Let a = dimF(A) > 0. By assumption (4), no non-zero element

of A is in the image of U . Hence there must exist indices k1 < k2 < · · · < ka
such that xk1

, . . . , xka
is a basis for A. In fact, K = {k1, . . . , ka} is precisely the

set of indices i such that 2αi = ℓ+(Y, s). Suppose i ∈ K and i < r. Then (3.2)

gives 2(αi+1 + ni+1 − 1) ≥ 2αi = ℓ+(Y, s). But 2(αi+1 + ni+1 − 1) is the degree of

Uni+1−1xi+1 and 2ℓ+(Y, s) is the highest degree in HF+
red(Y, s). So we must have

2(αi+1 + ni+1 − 1) = ℓ+(Y, s). But from assumption (4), this can only happen if

ni+1 = 1, hence 2αi+1 = ℓ+(Y, s) and so i + 1 ∈ K. So if i ∈ K and i < r, then

i + 1 ∈ K. It follows that K = {r − a + 1, r − a + 2, . . . , r}. In particular, r ∈ K

and αr = ℓ+(Y, s)/2. Therefore

j′(Y, s) = jr = αr − δjr = ℓ+(Y, s)/2− δ0(Y, s) + dimF(HF ∗
red(Y, s)),

where the last equality holds since δ0 − δjr = dimF(HF ∗
red(Y, s)).

Lastly, suppose that Y is an integral homology sphere and δ(Y ) ∈ 2Z. From

assumption (1), it follows that HF+
red(Y ) is non-zero only in even degrees. Then

from [36, Theorem 1.3], it follows that dimF(HF ∗
red(Y )) = δ(Y )+λ(Y ), where λ(Y )

is the Casson invariant. Hence we have that j′(Y ) = ℓ+(Y )/2 − δ0(Y ) + δ(Y ) +

λ(Y ). □

3.3. Delta invariants of Brieskorn spheres. Given pairwise coprime integers

a1, . . . , ar with r ≥ 3 define the Brieskorn homology sphere Σ(a1, . . . , ar) to be the

link of the singularity at the origin of the variey {(z1, . . . , zr) ∈ Cn | bi1za1
1 +bi2z

a2
2 +

· · ·+birz
ar
r = 0, 1 ≤ i ≤ r−2}, where (bij) is a sufficiently generic (r−2)×r matrix.

Then Σ(a1, a2, . . . , ar) is the Seifert homology sphere M(e0, (a1, b1), . . . , (ar, br)),

where e0, b1, . . . , br are uniquely determined by the conditions that 0 < bj < aj and

(3.3) e0 +

r∑
j=1

bj
aj

= − 1

a1a2 · · · ar
.

Note that e0 < 0 because bj > 0 for all j.

Let Y = Σ(a1, . . . , ar) be a Brieskorn homology sphere. The Seifert structure

of Y gives a circle action. For any prime p, the restriction of the circle action to

Zp ⊂ S1 defines an action of the finite cyclic group G = Zp. We are interested in

studying the equivariant Seiberg–Witten–Floer cohomology groups of Y and −Y

with respect to this action. Since Y has a unique spinc-structure we will omit it from

the notation and write HSW ∗
G(Y ) and HSW ∗

G(−Y ). Similarly the δ-invariants will

be denoted δ
(p)
j (Y ) and δ

(p)
j (−Y ).

To understand the equivariant Seiberg–Witten–Floer cohomology groups of Y

and −Y , we will use the spectral sequence relating it to the corresponding non-

equivariant groups. We have

HSW ∗(Y ) ∼= HF+(Y ) ∼= F[U ]d(Y ) ⊕HF+
red(Y )

HSW ∗(−Y ) ∼= HF+(−Y ) ∼= F[U ]−d(Y ) ⊕HF+
red(−Y )

From [35], we have that HF+(−Y ) is concentrated in even degrees. It fol-

lows that d(Y ) is even and HF+
red(Y ) is concentrated in odd degrees. Furthermore

HF+(−Y ) can be computed from the graded roots algorithm [31]. This algorithm
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implies that HF+
red(−Y ) is concentrated in degrees at least −d(Y ). Dually this

implies that HF+
red(Y ) is concentrated in degrees at most d(Y )− 1.

Proposition 3.6. Let Y = Σ(a1, . . . , ar) be a Brieskorn homology sphere. We

have:

(1) rk(HF+
red(Y )) = −δ(Y )− λ(Y ) where λ(Y ) is the Casson invariant of Y .

(2) δ
(p)
j (Y ) = δ

(p)
∞ (Y ) for all j ≥ 0.

(3) δ(Y ) ≤ δ
(p)
∞ (Y ) ≤ −λ(Y ) and λ(Y ) ≤ δ

(p)
j (−Y ) ≤ −δ(Y ) for all j ≥ 0.

Proof. From [36, Theorem 1.3] we have that χ(HF+
red(Y )) = δ(Y ) + λ(Y ). But

HF+
red(Y ) is concentrated in odd degrees, which gives (1).

We will prove (2) and (3) in the case that p is odd. The case p = 2 is similar

and omitted for brevity. Recall that for odd primes we have H∗
Zp

∼= F[R,S]/(R2)

with deg(R) = 1, deg(S) = 2.

As in Section 3.1, let {Ep,q
r (Y ), dr} denote the spectral sequence for the equivari-

ant Seiberg–Witten–Floer cohomologyHSW ∗
Zp
(Y ). We have a filtration {F∗

j (Y )}j≥0

on HSW ∗
Zp
(Y ) such that E∞(Y ) is isomorphic to the associated graded group

E∞(Y ) ∼= Gr(HSW ∗
Zp
(Y )) =

⊕
j≥0

Fj(Y )/Fj+1(Y )

as H∗
S1×Zp

-modules. Furthermore, we have that

Ep,q
2 (Y ) = Hp(Zp;HF+

q (Y )).

Now since the Zp-action on Y is contained in a circle action, the generator of the

Zp-action is smoothly isotopic to the identity and acts trivially on HF+(Y ). Hence

we further have

Ep,q
2 (Y ) ∼= HF+

q (Y )⊗F H
p
Zp
.

Choose an element θ ∈ HF+
d(Y )(Y ) such that Ukθ ̸= 0 for all k ≥ 0. Then

HF+(Y ) ∼= F[U ]θ ⊕HF+
red(Y ) and hence

E2(Y ) ∼= H∗
Zp
[U ]θ ⊕

(
HF+

red(Y )⊗F H
∗
Zp

)
∼=

F[U,R, S]

(R2)
θ ⊕

HF+
red(Y )[R,S]

(R2)
.

We have a similar spectral sequence Ep,q
r (−Y ) and filtration {Fj(−Y )} onHSW ∗

Zp
(−Y )

such that E∗,∗
∞ (−Y ) is isomorphic to the associated graded H∗

S1×Zp
-module of the

filtration. We have

E2(−Y ) ∼=
F[U,R, S]

(R2)
ω ⊕

HF+
red(−Y )[R,S]

(R2)

for some ω of bi-degree (0,−d(Y )). Now recall that HF+
red(−Y ) is concentrated in

degrees at least −d(Y ). Hence dr(ω) = 0 for all r ≥ 2. It immediately follows that

δ
(p)
0 (−Y ) = −δ(Y ) and hence δ

(p)
j (−Y ) ≤ −δ(Y ) for all j ≥ 0.

Define Er(Y )red to be the subgroup of Er(Y ) consisting of elements x such that

Ukx = 0 for some k ≥ 0. So for r = 2 we have E2(Y )red ∼= HF+
red(Y )[R,S]/(R2)
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and

E2(Y ) ∼=
F[U,R, S]

(R2)
θ ⊕ E2(Y )red.

As explained in [5, §5], the image of the differential dr is contained in Er(Y )red.

It follows that for each r ≥ 2, Er(Y ) is of the form

Er(Y ) ∼=
F[U,R, S]

(R2)
Umrθ ⊕ Er(Y )red

for some increasing sequence 0 = m0 ≤ m1 ≤ . . . . It is further shown in [5, §5] that

the sequence mr must be eventually constant. Hence we have

E∞(Y ) ∼=
F[U,R, S]

(R2)
Umθ ⊕ E∞(Y )red

where m = limr→∞ mr.

Since we work over a field F, it is possible to (non-canonically) split the filtration

{Fj(Y )} giving an isomorphism of F-vector spaces

HSW ∗
Zp
(Y ) ∼= E∗,∗

∞ (Y ).

Under this isomorphism Fj(Y ) corresponds to the subspace of E∞(Y ) spanned by

homogeneous elements of bi-degree (p, q) where p ≥ j. We fix a choice of such

an isomorphism φ : HSW ∗
Zp
(Y ) → E∗,∗

∞ (Y ) and henceforth identify HSW ∗
Zp
(Y )

with E∗,∗
∞ (Y ). This isomorphism will typically not be an isomorphism of H∗

S1×Zp
-

modules. Nevertheless we can use the isomorphim φ to induce a new H∗
S1×Zp

-

module action on E∗,∗
∞ (Y ) corresponding to the one on HSW ∗

Zp
(Y ). To be precise,

if c ∈ H∗
S1×Zp

, then we define ĉ : E∞ → E∞ by ĉ x = φ(cφ−1(x)). Consider in

particular Û . The action of Û will typically not respect the bi-grading, but we can

decompose it into homogeneous components as

Û = U(0,2) + U(1,1) + U(2,0) + U(3,−1) + · · ·

where Uj,2−j : E
p,q
∞ (Y ) → Ep+j,q+2−j

∞ (Y ). Note that there are only terms of bi-

degree (j, 2 − j) for j ≥ 0 as Û respects the filtration {Fj(Y )}. Note also that

U(0,2) = U because taking the associated graded module of the filtration recovers

the original H∗
S1×Zp

-module structure on E∞(Y ).

Recall that δ
(p)
j (Y ) is given by i/2− j where i is the least degree such that there

exists an x ∈ HSW i
Zp
(Y ) with Ukx = SjU lθ (mod F2j+1(Y )) for some k, l ≥ 0.

Recall that E∞(Y ) ∼= F[U,R, S]/(R2)Umθ ⊕ (E∞(Y ))red. Since θ has bi-degree

(0, d(Y )), each homogeneous element in F[U,R, S]/(R2)Umθ has bi-degree (p, q)

where q ≥ d(Y ) + 2m. On the other hand, since E∞(Y )red is a subquotient of

HF+
red(Y )[R,S]/(R2) and HF+

red(Y ) is concentrated in degrees at most d(Y ) − 1,

we see that each homogeneous element x in E∞(Y )red has bi-degree (p, q), where

q ≤ d(Y ) − 1. Then Ux = U(0,2)x + U(1,1)x + · · · is a sum of homogeneous terms

U(j,2−j)x of bidegree (p+ j, q + 2− j). Consider first U(0,2)x. Since U(0,2) = U , we

see that U(0,2)x ∈ E∞(Y )red. Each of the remaining terms U(j,2−j)x for j ≥ 1 has

bi-degree of the form (p′, q′) = (p+j, q+2−j), hence q′ = q+2−j ≤ q+1 ≤ d(Y ).

Thus if m > 0, then U(j,2−j)x must belong again to E∞(Y )red. This implies that
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E∞(Y )red is an F[Û ]-submodule of E∞(Y ). It follows easily from this that for

any fixed j ≥ 0, there exists a k ≥ 0 such that UkE∞(Y )red ⊆ F2j+1(Y ). This

further implies that x = SjUmθ is a minimal degree element such that Ukx =

SjU lθ (mod F2j+1(Y )) for some k, l ≥ 0, hence δ
(p)
j (Y ) = m+d(Y )/2 for all j ≥ 0.

So δ
(p)
j (Y ) = δ

(p)
∞ (Y ) = m+ δ(Y ) > δ(Y ). From [5, Proposition 5.10], we also have

that m ≤ rk(HF+
red(Y )) = −δ(Y )− λ(Y ), so δ

(p)
∞ (Y ) = m+ δ(Y ) ≤ −λ(Y ).

Ifm = 0, then we still have that ÛE∞(Y )red ⊆ E∞(Y )red, for if this were not the

case then we would have some x ∈ E∞(Y )
a,d(Y )−1
red such that U(1,1)x /∈ E∞(Y )red.

Further, since HF+
red(Y ) is concentrated in degrees at most d(Y )−1, it follows that

U(0,2)x = 0 and that U(1,1)x = cθ for some non-zero element c ∈ Ha+1
Zp

. Then since

U(j,2−j)x ∈ Fa+2(Y ) for j ≥ 2, it follows that

Ûx = cθ (mod Fa+2(Y )).

Hence δZp,c(Y ) < δ(Y ). On the other hand, we have already shown that δZp,1 =

δ
(p)
0 (−Y ) = −δ(Y ). Using this and [5, Theorem 4.4], we have

0 ≤ δZp,c(Y ) + δZp,1(−Y ) < δ(Y )− δ(Y ) = 0,

a contradiction. So even in the m = 0 case we still have that ÛE∞(Y )red ⊆
E∞(Y )red and so we again conclude that δ

(p)
j (Y ) = δ

(p)
∞ (Y ) for all j ≥ 0 and that

δ
(p)
∞ (Y ) ≤ −λ(Y ). This proves (2).

We have proven everything except the inequality δ
(p)
j (−Y ) ≥ λ(Y ). But from

δ
(p)
0 (Y ) ≤ −λ(Y ) and [5, Theorem 4.4], it follows that

0 ≤ δ
(p)
j (−Y ) + δ

(p)
0 (Y ) ≤ δ

(p)
j (−Y )− λ(Y ),

for all j ≥ 0. Hence δ
(p)
j (−Y ) ≥ λ(Y ). □

4. Computation of θ(c)(Ta,b)

Let a, b, c > 1 be coprime integers and suppose also that c is prime. In this

section we will prove that θ(c)(Ta,b) = (a−1)(b−1)/2, where Ta,b is the (a, b)-torus

knot. Since Σc(Ta,b) = Σ(a, b, c), we will be interested in computing the invariant

j(c)(Σ(a, b, c)) of the Brieskorn sphere Σ(a, b, c). Consequently we are interested

in studying the structure of the Floer homology of Σ(a, b, c). Combined with the

results of Section 3, we will be able to carry out the computation of θ(c)(Ta,b).

4.1. Floer homology of −Σ(a, b, c). Let 1 < a < b < c be pairwise coprime

integers and let Σ(a, b, c) denote the Brieskorn homology 3-sphere oriented so that

it is the link of the singularity xa + yb + zc = 0 in C3. The graded roots algorithm

of Némethi can be used to compute the Floer homology HF+(−Σ(a, b, c)) [31]. In

this case the algorithm produces a τ function τ : Z≥0 → Z from which a graded

root (R,χ) may be constructed [31, Example 3.4 (3)]. The graded root (R,χ) gives

rise to an associated F[U ]-module H(R,χ), which up to a grading shift coincides

with HF+(−Σ(a, b, c)).
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For a Brieskorn sphere Σ(a, b, c), the τ function τ(i) is given as follows [31, §11],

[6]. Let e0, p1, p2, p3 be the unique integers with 0 < p1 < a, 0 < p2 < b, 0 < p3 < c

and

abce0 + p1bc+ ap2c+ abp3 = −1.

Then

(4.1) τ(i) =

i−1∑
n=0

∆(n),

where

(4.2) ∆(n) = 1− e0n−
⌈p1n

a

⌉
−
⌈p2n

b

⌉
−
⌈p3n

c

⌉
.

By [6, Theorem 1.3], we have τ(n+ 1) ≥ τ(n) for n > N , where

N = abc− bc− ac− ab.

Note that N > 0 except when (a, b, c) = (2, 3, 5). We will exclude this case from the

discussion unless stated otherwise. For the purpose of computing the Floer homol-

ogy, it suffices to consider the τ function up until the point where it is increasing.

So we only need the restricted τ function τ : [0, N + 1] → Z, or equivalently, it

suffices to determine the ∆-function ∆: [0, N ] → Z. Furthermore, the function ∆

is completely determined on [0, N ] as follows [6, Theorem 1.3]. Let

G = {g ∈ Z≥0 | g = bci+ acj + abk for some i, j, k ∈ Z≥0}

be the additive semigroup generated by bc, ac, ab. We have that ∆(n) ∈ {−1, 0, 1}
for all n ∈ [0, N ]. Moreover, for any n ∈ [0, N ], we have that

∆(n) =


1 n ∈ G,

−1 N − n ∈ G,

0 otherwise.

It follow that for n ∈ [0, N ], we have

(4.3) τ(n+ 1) = |G ∩ [0, n]| − |G ∩ [N − n,N ]|

where |S| denotes the cardinality of a finite set S. From this expression it is clear

that τ satisfies τ(N + 1− n) = τ(n) for all n ∈ [0, N ].

Remark 4.1. Note that since 0 < N < abc, it follows from the Chinese remainder

theorem that any n ∈ G∩ [0, N ] can be written as abc(i/a+ j/b+ k/c) for uniquely

determined integers i, j, k satisfying 0 < i < a, 0 < j < b, 0 < k < c.

We briefly explain how to obtain HF+(−Σ(a, b, c)) from the τ function. First

we recall the definition of a graded root:

Definition 4.2 ([31]). Let R be an infinite tree with vertices V and edges E . Denote

by [u, v] the edge joining u and v. Edges are unordered, so [u, v] = [v, u]. We say

that R is a graded root with grading χ : V → Z if

(a) χ(u)− χ(v) = ±1 for all [u, v] ∈ E ,
(b) χ(u) > min{χ(v), χ(w)} if [u, v], [u,w] ∈ E and v ̸= w,
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(c) χ is bounded from below, χ−1(k) is finite for any k ∈ Z and |χ−1(k)| = 1

for all sufficiently large k.

Define a partial relation ⪰ on (R,χ) by declaring v ⪰ w if there exists a sequence

of vertices w = w0, w1, . . . , wk = v such that [wi−1, wi] ∈ E and χ(wi)−χ(wi−1) = 1

for i = 1, . . . , k. From the axioms (a)-(c), it is easily seen that for each u ∈ V there

is a unique vertex v ∈ V with [u, v] ∈ E and χ(v) = χ(u) + 1. From this and axiom

(c), it is seen that for any two vertices u, v ∈ V there is a unique ⪰-minimal element

w ∈ V with w ⪰ v and w ⪰ u. We denote this element by sup(u, v).

For v ∈ V, let δv be the number of edges which have v as an endpoint. Clearly

δv ≥ 1 and δv = 1 if and only if v is ⪰-minimal.

Given a graded root (R,χ) define H(R,χ) to be the graded F[U ]-module con-

structed as follows. A basis for H(R,χ) is given by {ev | v ∈ V} where deg(ev) =

2χ(v) and Uev = eu, where u is the unique u ∈ V such that [u, v] ∈ E and

χ(u) = χ(v) + 1. Note that our definition of H(R,χ) differs slightly from the

one in [31]. This is because we are using Floer cohomology rather than homology.

The underlying graded abelian group of H(R,χ) is the same as that in [31], but our

F[U ]-module action is the transpose of the one in [31].

For a positive integer n let T +(n) denote the F[U ]-module F[U ]/(Un). For any

integer d and any F[U ]-module M , let Md be the degree-shift of M defined by

(Md)
j = M j−d. In particular, for any positive integer n and any integer d, we have

the F[U ]-module T +
d (n) = (T +(n))d. We refer to T +

d (n) as a tower of length n.

The lowest degree in T +
d (n) is d and the highest degree is d+ 2n− 2.

Proposition 4.3 ([31], Proposition 3.5.2). Let (R,χ) be a graded root. Set I =

{v ∈ V | δv = 1}. We choose an ordering on the set I as follows. The first element

v1 ∈ I is chosen so that χ(v1) is the minimal value of χ. If v1, . . . , vk ∈ I are

already determined and J = {v1, . . . , vk} ≠ I, then vk+1 is chosen from I \ J such

that χ(vk+1) = minv∈I\J χ(v). Let wk+1 ∈ V be the unique ⪰-minimal vertex of R

which dominates both vk+1 and some element of J . Then we have an isomorphism

of F[U ]-modules:

H(R,χ) ∼= F[U ]2χ(v1) ⊕
⊕
k≥2

T +
2χ(vk)

(χ(wk)− χ(vk)).

In particular we have an isomorphism

Hred(R,χ) ∼=
⊕
k≥2

T +
2χ(vk)

(χ(wk)− χ(vk)).

Let τ : {0, 1, . . . , l} → Z be any function and suppose there is an l such that

τ(i + 1) ≥ τ(i) for all i ≥ l. Following [31, Example 3.4], we construct a graded

root (R,χ) from τ as follows. Start with the vertex set Ṽ = {vki } where 0 ≤ i ≤ l

and k ≥ τ(i), edge set Ẽ = [vki , v
k+1
i ] and define χ̃ by χ̃(vki ) = k. Now define

V = Ṽ/∼ and E = Ẽ/∼ where for i ≤ j we set vki ∼ vkj and [vki , v
k+1
i ] ∼ [vkj , v

k+1
j ] if

k ≥ maxi≤u≤j τ(u). We define χ to be the function on V induced by χ̃. It is easily

checked that (V, E , χ) is a graded root. We call it the graded root associated to τ .
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Let 1 < a < b < c be pairwise coprime integers and let τ be the τ -function

defined as in Equations (4.1)-(4.2). Let (Rτ , χτ ) be the associated graded root.

Then from [31] it follows that up to a grading shift HF+(−Σ(a, b, c)) is isomorphic

to H(Rτ , χτ ):

HF+(−Σ(a, b, c)) ∼= H(Rτ , χτ )[u].

The precise value of the grading shift u can be computed [31, Proposition 4.7], but

we will not need this.

Observe that τ(0) = τ(N + 1) = 0 and that τ(1) = τ(N) = 1. We will see

in Proposition 4.5 that τ(n) ≤ 1 for all n ∈ [0, N + 1], hence 1 and N are global

maxima of τ . Let n ∈ [0, N + 1] be a global maximum of τ , that is, τ(n) = 1. We

will say n is a trivial maximum if we either have that τ(i) = 1 for all 1 ≤ i ≤ n or

τ(i) = 1 for all n ≤ i ≤ N .

Proposition 4.4. Suppose that all global maxima of τ are trivial. Let ℓ+(−Σ(a, b, c))

denote the highest non-zero degree in HF+
red(−Σ(a, b, c)). Any non-zero element in

the image of U : HF+
red(−Σ(a, b, c)) → HF+

red(−Σ(a, b, c)) has degree strictly less

than ℓ+(−Σ(a, b, c)).

Proof. Let (Rτ , χτ ) be the graded root associated to τ . From the definition of

(Rτ , χτ ), it is clear that (Rτ , χτ ) depends only on the values of the local minima

and local maxima of τ . More precisely, let Smin be the set of m ∈ [0, N + 1] such

that m = 0, m = N + 1, or τ(m − 1) > τ(m) and there exists a k ≥ 0 such that

τ(i) = τ(m) for m ≤ i ≤ m + k and τ(m + k + 1) > τ(m). Similarly, let Smax

be the set of M ∈ [1, N ] such that τ(M) > τ(M − 1) and there exists a k ≥ 0

such that τ(i) = τ(M) for M ≤ i ≤ M + k and τ(M + k + 1) < τ(M). Write

the elements of Smin and Smax in increasing order as Smin = {m0,m1, . . . ,mr},
Smax = {M1,M2, . . . ,Mr} where 0 = m0 < m1 < · · · < mr = N +1 and 1 = M1 <

M2 < · · · < Mr. The local minima and maxima must occur in alternating order,

so we have

0 = m0 < M1 < m1 < M2 < · · · < mr−1 < Mr < mr = N + 1.

Furthermore, M1 and Mr correspond to the trivial global maxima. By assumption

these are the only global maxima. Hence τ(Mj) ≤ 0 for 1 < j < r.

Recall that (Rτ , χτ ) is constructed as follows. Start with Ṽ = {vki } where 0 ≤
i ≤ N + 1 and k ≥ τ(i), edge set Ẽ = [vki , v

k+1
i ] and define χ̃ by χ̃(vki ) = k. Then

(Rτ , χτ ) is obtained by taking the quotient of this by the equivalence relation ∼,

where for i ≤ j we set vki ∼ vkj and [vki , v
k+1
i ] ∼ [vkj , v

k+1
j ] if k ≥ maxi≤u≤j τ(u).

It is easily seen that the minima of ⪰ on (Rτ , χτ ) are precisely the elements

I = {vτ(mi)
mi }0≤i≤r. From Proposition 4.5 we have that τ(n) ≤ 1 for all n ∈ [0, N+1]

and hence τ(mi) ≤ 0 for any local minimum. Hence we may choose a permutation

σ : {0, 1, . . . , r} → {0, 1, . . . , r} such that τ(mσ(i)) ≤ τ(mσ(i+1)) for 0 ≤ i ≤ r − 1

and σ(r− 1) = 0, σ(r) = r. This gives an ordering of the set I as in the statement

of Proposition 4.3, namely I = {v′0, v′1, v′2, . . . , v′r} where v′i = v
τ(mσ(i))
mσ(i)

. For each

i ∈ {1, . . . , r} and each j ∈ {0, 1, . . . , i − 1} one finds that sup(v′i, v
′
j) = v

Kij

mσ(i)
,

where Kij is the maximum of τ(Ma) for all a such that Ma lies in the interval
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joining mσ(i) and mσ(j). Now let w1, w2, . . . , wr be defined as in the statement

of Proposition 4.3. Then it follows that wi = vKi
mσ(i)

, where Ki = min0≤j≤i−i Kij .

Now suppose that i ̸= r−1, r. Then for all j ∈ {0, . . . , i−1} we have that σ(i) ̸= 0, r

and σ(j) ̸= 0, r. It follows that each maximum Ma in the interval joining mσ(i) and

mσ(j) is not trivial and hence τ(Ma) ≤ 0. Hence Kij ≤ 0 for all i ≤ r−2 and j < i.

This also implies that χ(wi) = Ki ≤ 0 for all i ≤ r − 2. On the other hand since

τ(M1) = τ(Mr) = 1, it follows that Kr−1 = Kr = 1 and thus χ(wr−1) = χ(wr) = 1.

From Proposition 4.3, we have an isomorphism

Hred(Rτ , χτ ) ∼=
r⊕

k=1

T +
2χ(v′

k)
(χ(wk)− χ(v′k)).

The highest degree in the tower T +
2χ(v′

k)
(χ(wk)−χ(v′k)) is 2χ(wk)−2. For k ̸= r−1, r

we have 2χ(wk)− 2 ≤ −2 whereas for k = r − 1, r we have 2χ(wk)− 2 = 0. Thus

the highest non-zero degree in Hred(Rτ , χτ ) is 0 and only the towers for k = r−1, r

attain this degree. Moreover the length of the tower T +
2χ(v′

k)
(χ(wk) − χ(v′k)) is

χ(wk)−χ(v′k) which for k = r− 1, r equals 1, since v′r−1 = v
τ(mσ(r−1))

σ(r−1) = v
τ(0)
0 = v00

and v′r = v
τ(mσ(r))

σ(r) = v
τ(mr)
r = v0r , so χ(v′r−1) = χ(v′r) = 0. It follows that

any non-zero element in the image of U : Hred(Rτ , χτ ) → Hred(Rτ , χτ ) has de-

gree strictly less than 0. Now since HF+
red(−Σ(a, b, c)) is isomorphic to a grad-

ing shift of Hred(Rτ , χτ ), it also follows that any non-zero element in the im-

age of U : HF+
red(−Σ(a, b, c)) → HF+

red(−Σ(a, b, c)) has degree strictly less than

ℓ+(−Σ(a, b, c)). □

Proposition 4.5. Let 1 < a < b < c be pairwise coprime integers and assume that

(a, b, c) ̸= (2, 3, 5). Then τ(n+ 1) ≤ 1 for all n ∈ [0, N ]. Furthermore, all maxima

of τ are trivial, except in the following cases: (a, b, c) = (2, 3, 6n − 1), n ≥ 2 or

(a, b, c) = (2, 3, 6n+ 1), n ≥ 1.

Proof. For n ∈ [0, N ], let αn be the largest element of G less than or equal to

N − n. Suppose that j ∈ G ∩ [0, n] \ {0}. We claim that j + αn ∈ G ∩ [N − n,N ].

Clearly j + αn ∈ G because j, αn ∈ G. Since j ≤ n and αn ≤ N − n, we also have

j+αn ≤ N . Lastly, since j > 0, we have j+αn ≥ N−n for if not then αn is not the

largest element of G less than or equal to N−n. Therefore j+αn ∈ G∩ [N−n,N ].

So we have constructed an injective map ϕn : G ∩ [0, n] \ {0} → G ∩ [N − n,N ],

given by ϕ(j) = j + αn. Therefore |G ∩ [0, n]| ≤ 1 + |G ∩ [N − n,N ]. Comparing

with Equation (4.3), we have shown that τ(n) ≤ 1.

Now suppose that n0 ∈ [1, N ] is a maximum of τ , so τ(n0) = 1. By the symmetry

τ(N + 1 + i) = τ(i) of the τ function, it suffices to consider only maxima n0 such

that n0 ≥ (N + 1)/2. Since τ can only change by ±1, there exists an n ≥ n0 such

that τ(i) = 1 for n0 ≤ i ≤ n and τ(n + 1) = 0. Since τ(N + 1) = 0, we see that

n ≤ N . Also we have n ≥ n0 ≥ (N + 1)/2.

Since τ(n) = 1 and τ(n + 1) = 0, we have that ∆(n) = τ(n + 1) − τ(n) = −1.

Hence N−n ∈ G and n /∈ G. Since N−n ∈ G, it follows that αn = N−n. Consider

the map ϕ : G∩ [0, n] → G∩ [N −n,N ] given by ϕ(j) = j +N −n (we already saw

that ϕ(j) ∈ G∩[N−n,N ] for j > 0 and we also have ϕ(0) = N−n ∈ G∩[N−n,N ]).
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Since τ(n+ 1) = 0, it follows that ϕ is a bijection. Thus every g ∈ G ∩ [N − n,N ]

can be written uniquely as g = (N−n)+g′ for some g ∈ G∩[0, n]. Since N−n ∈ G,

we may write it in the form

N − n = abc

(
i0
a

+
j0
b
+

k0
c

)
for some i0, j0, k0 ≥ 0. It follows that any g ∈ G ∩ [N − n,N ] has the form

(4.4) g = abc

(
i

a
+

j

b
+

k

c

)
where i ≥ i0, j ≥ j0, k ≥ k0. Furthermore, by Remark 4.1, this is a necessary

condition. That is, if g ∈ G ∩ [N − n,N ] is written as in (4.4) then we must have

i ≥ i0, j ≥ j0, k ≥ k0.

Suppose that i0 > 0. There exists an integer k such that 1/a lies in the interval

[(k − 1)/c, k/c]. Thus
1

a
≤ k

c
≤ 1

a
+

1

c
.

Consider

g = (N − n) + abc

(
−1

a
+

k

c

)
= abc

(
i0 − 1

a
+

j0
b
+

k0 + k

c

)
.

Then g ∈ G and g ≥ N − n since k/c − 1/a ≥ 0. But g is not of the form

abc(i′/a+ j′/b+ k′/c) with i′ ≥ i0, j
′ ≥ j0, k

′ ≥ k0, hence g /∈ G∩ [N −n,N ]. The

only way this can happen is that g > N . Thus

g = (N − n) + abc

(
−1

a
+

k

c

)
> N,

which implies that n < abc(−1/a+ k/c). But k/c ≤ 1/a+ 1/c, so n < abc/c = ab.

Note that since a < b < c, ab is the smallest positive element of G. Thus i /∈ G for

all 1 ≤ i ≤ n. So ∆(i) ≤ 0 for 1 ≤ i ≤ n. But we also have that

τ(n) = 1 =

n−1∑
i=0

∆(i) = 1 +

n−1∑
i=1

∆(i).

Since ∆(i) ≤ 0 for 1 ≤ i ≤ n, the only way we can have equality is that ∆(i) = 0

for 1 ≤ i ≤ n and hence τ(i) = 1 for 1 ≤ i ≤ n. This means that n is a trivial

maximum.

Next, suppose that i0 = 0 and j0 > 0. Then by a similar argument to the i0 > 0

case, there exists a k such that 1/b ≤ k/c ≤ 1/b+ 1/c. Consider

g = (N − n) + abc

(
−1

b
+

k

c

)
.

Arguing as in the i0 > 0 case, we see that n is again a trivial maximum.

Now consider the case that i0 = j0 = 0. Hence N − n = abc(k0/c) for some

k0 ≥ 0. We will assume that k0 > 0 for if k0 = 0, then n = N is a trivial maximum.

Furthermore, recall that we are assuming n ≥ (N + 1)/2 > N/2. Therefore

(4.5)
k0
c

<
N

2abc
=

1

2
− 1

2a
− 1

2b
− 1

2c
.
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Recall that each element of G ∩ [N − n,N ] has the form given by (4.4) with i ≥ 0,

j ≥ 0, k ≥ k0. It follows that there does not exist a solution to

(4.6)
k0
c

≤ j

b
+

k0 − 1

c
≤ 1− 1

a
− 1

b
− 1

c

with j ≥ 0. For if such a j exists, we would have

N − n = abc

(
k0
c

)
< abc

(
j

b
+

k0 − 1

c

)
≤ N

and thus g = abc(j/b + (k0 − 1)/c) would be an element of G ∩ [N − n,N ] not of

the form abc(i′/a+ j′/b+ k′/c) with i′ ≥ i0, j
′ ≥ j0, k

′ ≥ k0. In particular, j = 1

is not a solution. But since b < c, we have 1/b+ (k0 − 1)/c > k0/c. So it must be

the second inequality in (4.6) that is violated. That is, we must have

j

b
+

k0 − 1

c
> 1− 1

a
− 1

b
− 1

c
.

Rearranging and using (4.5), we find that

(4.7)
1

a
+

3

b
− 1

c
> 1.

If this condition is not satisfied, then all maxima of τ are trivial.

If a ≥ 4, then b ≥ 5 and

1

a
+

3

b
− 1

c
<

1

4
+

3

5
< 1.

So (4.7) implies a < 4, hence a = 2 or 3.

If a = 3, then since 1/3 + 3/5 < 1, (4.7) implies that b ≤ 5. So b = 4 and then

(4.7) implies that c > 12.

If a = 2, then since 1/2 + 3/6− 1/c < 1, we must have b < 6. Hence b = 3 or 5.

If a = 2, b = 5, then (4.7) is satisfied for any c > 10.

If a = 2, b = 3, then (4.7) is satisfied for any c > 3. But we are excluding (2, 3, 5)

so c > 5.

To summarise, (4.7) is satisfied only in the following cases:

(1) (a, b, c) = (3, 4, c), c > 12.

(2) (a, b, c) = (2, 5, c), c > 10.

(3) (a, b, c) = (2, 3, c), c > 5.

It remains to show in cases (1) and (2) we still have that all maxima of τ are

trivial. We do this by a direct computation of the τ function.

In case (1) there are four subcases:

(1a) (a, b, c) = (3, 4, 12k + 1), k ≥ 1.

(1b) (a, b, c) = (3, 4, 12k + 5), k ≥ 1.

(1c) (a, b, c) = (3, 4, 12k + 7), k ≥ 1.

(1d) (a, b, c) = (3, 4, 12k + 11), k ≥ 1.

Similarly in case (2) there are four subcases:

(2a) (a, b, c) = (2, 5, 10k + 1), k ≥ 1.

(2b) (a, b, c) = (2, 5, 10k + 3), k ≥ 1.

(2c) (a, b, c) = (2, 5, 10k + 7), k ≥ 1.
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(2d) (a, b, c) = (2, 5, 10k + 9), k ≥ 1.

Case (1a): N = 60k − 7, G is generated by {12, 36k + 3, 48k + 4}. By the

symmetry of the τ function, it suffices to only look for maxima of τ(n + 1) with

n ∈ [0, N/2]. We consider the intersection of G with [0, N/2]. Since 36k+3 > N/2,

all elements of G ∩ [0, N ] have the form 12j for some j. Thus

G ∩ [0, N/2] = {12j}0≤j≤⌊N/24⌋.

Now we consider the intersection of N −G with [0, N ]. Elements of N −G in the

range [0, N ] have the form N − 12u, N − (36k + 3)− 12u or N − (48k + 4)− 12u

for some u ≥ 0. In the first case, we have

N − 12u = 12(5k − 1− u) + 5.

In the second case, we have

N − (36k + 3)− 12u = 12(2k − 1− u) + 2

and in the third case, we have

N − (48 + 4)− 12u = 12(k − 1− u) + 1.

Therefore

(N −G) ∩ [0, N ] = {12j + 5}0≤j≤5k−1 ∪ {12j + 2}0≤j≤2k−1 ∪ {12j + 1}0≤j≤k−1.

Partition [0, N ] into subintervals Ij = [12j, 12j + 11], 0 ≤ j ≤ 5k − 2 and

I5k−1 = [60k − 12, 60k − 7]. We are only interested in the subintervals which

intersect with [0, N/2], so we can assume j ≤ ⌊N/24⌋. Under this condition, we

have G ∩ Ij ∩G = {12j} and

(N −G) ∩ Ij =


12j + 1, 12j + 2, 12j + 5 0 ≤ j ≤ k − 1,

12j + 2, 12j + 5 k ≤ j ≤ 2k − 1,

12j + 5 2k ≤ j.

It follows easily that τ has only trivial maxima.

Case (1b): N = 60k + 13, G is generated by 12, 36k + 15, 48k + 20. Arguing

similarly to case (1a), we find

G ∩ [0, N/2] = {12j}0≤j≤⌊N/24⌋

and

(N −G) ∩ [0, N ] = {12j + 1}0≤j≤5k+1 ∪ {12j + 10}0≤j≤2k−1 ∪ {12j + 5}0≤j≤k−1.

By a similar argument, we see that τ has only trivial maxima.

Case (1c): N = 60k + 23, G is generated by 12, 36k + 21, 48k + 28. We find

G ∩ [0, N/2] = {12j}0≤j≤⌊N/24⌋

and

(N −G) ∩ [0, N ] = {12j + 11}0≤j≤5k+1 ∪ {12j + 2}0≤j≤2k ∪ {12j + 7}0≤j≤k−1.

We then see that τ has only trivial maxima.
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Case (1d): N = 60k + 43, G is generated by 12, 36k + 33, 48k + 44. We find

G ∩ [0, N/2] = {12j}0≤j≤⌊N/24⌋

and

(N −G) ∩ [0, N ] = {12j + 7}0≤j≤5k+3 ∪ {12j + 10}0≤j≤2k ∪ {12j + 11}0≤j≤k−1.

We then see that τ has only trivial maxima.

Case (2a): N = 30k − 7, G is generated by 10, 20k + 2, 50k + 5. We find

G ∩ [0, N/2] = {10j}0≤j≤⌊N/20⌋

and

(N −G) ∩ [0, N ] = {10j + 3}0≤j≤3k−1 ∪ {10j + 1}0≤j≤k−1

We then see that τ has only trivial maxima.

Case (2b): N = 30k − 1, G is generated by 10, 20k + 6, 50k + 15. We find

G ∩ [0, N/2] = {10j}0≤j≤⌊N/20⌋

and

(N −G) ∩ [0, N ] = {10j + 9}0≤j≤3k−1 ∪ {10j + 3}0≤j≤k−1

We then see that τ has only trivial maxima.

Case (2c): N = 30k + 11, G is generated by 10, 20k + 14, 50k + 35. We find

G ∩ [0, N/2] = {10j}0≤j≤⌊N/20⌋

and

(N −G) ∩ [0, N ] = {10j + 1}0≤j≤3k+1 ∪ {10j + 7}0≤j≤k−1

We then see that τ has only trivial maxima.

Case (2d): N = 30k + 17, G is generated by 10, 20k + 18, 50k + 45. We find

G ∩ [0, N/2] = {10j}0≤j≤⌊N/20⌋

and

(N −G) ∩ [0, N ] = {10j + 7}0≤j≤3k+1 ∪ {10j + 9}0≤j≤k−1

We then see that τ has only trivial maxima.

□

Proposition 4.6. Let 1 < a < b < c be pairwise coprime integers and assume

(a, b, c) ̸= (2, 3, 5). Let Y = −Σ(a, b, c) and let ℓ+(Y ) denote the highest non-zero

degree in HF+
red(Y ). Then ℓ+(Y ) = 2δ(Y ) − 2min{τ}. Moreover, any non-zero

element in the image of U : HF+
red(Y ) → HF+

red(Y ) has degree strictly less than

ℓ+(Y ).

Proof. Recall that HF+(Y ) is isomorphic to H(Rτ , χτ ) up to an overall grading

shift. The lowest degree in HF+(−Σ(a, b, c)) is 2δ(Y ) and the lowest degree in

H(Rτ , χτ ) is 2min{τ}, hence the grading shift is 2δ(Y ) − 2min{τ}. The highest

non-zero degree in H(Rτ , χτ ) is easily seen to be 0, hence ℓ+(Y ) = 2δ(Y )−2min{τ}.
If (a, b, c) ̸= (2, 3, 6n ± 1) for any n, then all global maxima of τ are trivial by

Proposition 4.5. Then by Proposition 4.4 we have that any non-zero element in the

image of U : HF+
red(Y ) → HF+

red(Y ) has degree strictly less than ℓ+(Y ).
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If (a, b, c) = (2, 3, 6n ± 1) for some n, then it is easily seen that HF+
red(Y ) is

concentrated in a single degree and hence U acts trivially on HF+
red(Y ).

□

4.2. Computation of j(c)(Ta,b) and θ(c)(Ta,b). Following [6], define κ(a, b, c) to

be the cardinality of G ∩ [0, N ].

Lemma 4.7. Let τ1(a, b, c) denote the number of integers x, y, z with 0 < x < a,

0 < y < b, 0 < z < c and x/a+ y/b+ z/c < 1. Then τ1(a, b, c) = κ(a, b, c).

Proof. By Remark 4.1, any x ∈ G with x ≤ N has a unique representation xbc +

yac + zab with 0 ≤ x < a, 0 ≤ y < b, 0 ≤ z < c. Thus κ(a, b, c) is the number of

points (x, y, z) ∈ Z3
≥0 such that

xbc+ yac+ zab ≤ abc− bc− ac− ab.

From [6, Theorem 1.3] it follows that N /∈ G, so κ(a, b, c) is also the number of

x, y, z ≥ 0 such that

xbc+ yac+ zab < abc− bc− ac− ab.

Dividing through by abc, this is equivalent to

x

a
+

y

b
+

z

c
< 1− 1

a
− 1

b
− 1

c

which can be rewritten as

x+ 1

a
+

y + 1

b
+

z + 1

q
< 1.

Setting x′ = x+1, y′ = y+1, z′ = z+1, we see that κ(a, b, c) is equal to τ1(a, b, c). □

Recall that λ denotes the Casson invariant. From [38, §19], we have 8λ(Σ(a, b, c)) =

−(a− 1)(b− 1)(c− 1) + 4τ1(a, b, c). Thus Lemma 4.7 gives:

(4.8) 8λ(Σ(a, b, c)) = −(a− 1)(b− 1)(c− 1) + 4κ(a, b, c).

From [15], [10], we also have that

8λ(Σ(a, b, c)) =

c−1∑
j=1

σTb,c
(j/c) = σ(c)(Ta,b).

Theorem 4.8. Let a, b, c > 1 be coprime integers and suppose that c is a prime

number. Then

j(c)(−Ta,b) =

{
κ(a, b, c) if c is odd,

2κ(a, b, c) if c = 2

and

θ(c)(Ta,b) = (a− 1)(b− 1)/2.

Proof. Let Y = −Σ(a, b, c). If (a, b, c) is a permutation of (2, 3, 5), thenHF+
red(Y ) =

0 and κ(2, 3, 5) = 0. Then from [5, Proposition 3.16], it follows that j(c)(−Ta,b) = 0

and θ(c)(Ta,b) = −σ(c)(Ta,b)/(c − 1). But since κ(2, 3, 5) = 0, Equation (4.8) gives

σ(c)(Ta,b) = 8λ(Σ(a, b, c)) = −(a−1)(b−1)(c−1). Hence θ(c)(Ta,b) = (a−1)(b−1)/2.
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Henceforth we assume that (a, b, c) is not a permutation of (2, 3, 5) and hence

HF+
red(Y ) ̸= 0. Recall that Σ(a, b, c) is the boundary of a negative definite plumbing

[32] whose plumbing graph has only one bad vertex in the sense of [35]. Then from

[35, Corollary 1.4], we have that HF+(Y ) is concentrated in even degrees. As

explained in [5, §7] we have Σ(a, b, c) = Σc(Ta,b) and the generator of the Zc-

action on Σ(a, b, c) is isotopic to the identity. Therefore in the spectral sequence

{Ep,q
r , dr} for the equivariant Seiberg–Witten–Floer cohomology of Y , we have

E0,q
2 = H0(Zc;HSW q(Y )) ∼= HSW q(Y ). Furthermore, the graded roots algorithm

implies that HF+
red(Y ) is concentrated in degrees d(Y ) and above. It follows that

there can be no differentials in the spectral sequence and hence δZc,S0(Y ) = δ(Y ).

Recall that δ
(c)
j (K) = −σ(c)(K)/2 for all sufficiently large j. Then since Y =

−Σ(a, b, c) = Σc(−Ta,b), it follows that

δZc,Sj (Y ) = −σ(c)(−Ta,b)/8 = λ(Σ(a, b, c)) = −λ(Y )

for sufficiently large j. But since HF ∗
red(Y ) is concentrated in even degrees, we

also have dimF(HF ∗
red(Y )) = δ(Y ) + λ(Y ). Hence for large enough j, we have

δZc,S0(Y ) − δZc,Sj (Y ) = δ(Y ) + λ(Y ) = dimF(HF ∗
red(Y )). From Proposition 4.6,

it follows that any element in the image of U : HF+
red(Y, s) → HF+

red(Y, s) has

degree strictly less than ℓ+(Y, s). Thus conditions (1)-(4) of Proposition 3.5 are

met. Therefore (since c is an odd prime and Y is an integral homology sphere) we

have

j′(Y ) = ℓ+(Y )/2− δZc,S0(Y ) + δ(Y ) + λ(Y ) = ℓ+(Y )/2 + λ(Y ),

where j′(Y ) = j(c)(Y ) if c is odd and j′(Y ) = j(2)(Y )/2 if c = 2. Moreover,

Proposition 4.6 also gives ℓ+(Y ) = 2(δ(Y ) − min(τ)). From [6, §5], we also have

that −min(τ) + δ(Y ) = κ(a, b, c)− λ(Y ). Thus ℓ+(Y ) = 2(κ− λ(Y )). Hence

j′(−Ta,b) = j(c)(Y ) = ℓ+(Y )/2 + λ(Y ) = κ(a, b, c),

which gives j(c)(−Ta,b) = κ(a, b, c) if c is odd and j(2)(−Ta,b) = 2κ(a, b, c) if c = 2.

We also have σ(c)(Ta,b) = −8λ(Y ) = 8λ(Σ(a, b, c)) and thus we have

θ(c)(Ta,b) = max

{
0,

2j′(Y )

(c− 1)
− σ(c)(Ta,b)

2(c− 1)

}
= max

{
0,

2κ(a, b, c)− 4λ(Σ(a, b, c))

(c− 1)

}
=

1

2
(a− 1)(b− 1)

where the last line follows from Equation (4.8). □

5. Branched covers

Let Y = Σ(a′1, a
′
2, . . . , a

′
r) be a Brieskorn homology sphere and p a prime such

that p divides a′1a
′
2 · · · a′r. Without loss of generality we may assume p divides a′1.

We set a1 = a′1/p and aj = a′j for j > 1. So Y = Σ(pa1, a2, . . . , ar). Then Zp

acts on Y with quotient space Y0 = Y/Zp = Σ(a1, . . . , ar) and the quotient map

Y → Y0 is a p-fold cyclic branched cover.
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Theorem 5.1. We have that

δ(−Y )− δ(p)∞ (−Y ) ≥ rk(HF+
red(Y ))− p rk(HF+

red(Y0)).

Proof. Let W0 be the negative definite plumbing bounded by Y0. Since Y0 is an

integral homology sphere it follows that H1(W0;Z) = 0. Let k ⊂ Y0 denote the

branch locus of Y → Y0. Then k is a knot in Y0. Let Σ ⊂ W0 be the pushoff

of a Seifert surface for k, so Σ is a properly embedded surface in W0 which meets

∂W0 = Y0 in k. Let W → W0 be the p-fold cyclic cover of W0 branched over Σ.

Then W has boundary Y and the Zp-action on Y extends to W . By [4, Proposition

2.5], for any characteristic c ∈ H2(W0;Z) there exists a Zp-invariant spin
c-structure

s on W such that c1(s) = π∗(c) in H2(W ;Q). Now we apply the equivariant

Frøyshov inequality [5, Theorem 5.3] to W giving δ∞(−Y ) + δ(W, s) ≤ 0, where

δ(W, s) =
c1(s)

2 − σ(W )

8

=
pc2 − σ(W )

8

= p

(
c2 − σ(W0)

8

)
+

pσ(W0)− σ(W )

8
.

The maximum of (c2 −σ(W0))/8 over all characteristics of H2(W0;Z) equals δ(Y0)

[31, Theorem 8.3]. Hence we obtain

δ(p)∞ (−Y ) + pδ(Y0) +
pσ(W0)− σ(W )

8
≤ 0,

which we may rewrite as

δ(−Y )− δ(p)∞ (−Y ) ≥ −(δ(Y )− pδ(Y0)) +
pσ(W0)− σ(W )

8
.

Next, we claim that (pσ(W0) − σ(W ))/8 = pλ(Y0) − λ(Y ), where λ(Y0), λ(Y )

are the Casson invariants of Y0 and Y . Assuming this claim for the moment, our

inquality becomes

δ(−Y )− δ(p)∞ (−Y ) ≥ −(δ(Y ) + λ(Y )) + p(δ(Y0) + λ(Y0)).

But since HF+
red(Y ) and HF+

red(Y0) are concentrated in odd degrees, [36, Theorem

1.3] gives

rk(HF+
red(Y )) = −δ(Y )− λ(Y ), rk(HF+

red(Y0)) = −δ(Y0)− λ(Y0),

and hence we obtain

δ(−Y )− δ(p)∞ (−Y ) ≥ rk(HFred(−Y ))− p rk(HFred(−Y0)).

It remains to prove the claim that (pσ(W0)− σ(W ))/8 = pλ(Y0)− λ(Y ). From

[11, Theorem 2], we have that

λZ/p(Y )− pλ(Y0) =
σ(W )− pσ(W0)

8

where λZ/p(Y ) is the equivariant Casson invariant of Y with respect to the Zp-

action [11]. Furthermore [11, Theorem 3] implies that λZ/p(Y ) = λ(Y ), because

k ⊂ Y0 = Σ(a1, . . . , ar) is a fibre of the Seifert fibration on Y0, so it is a graph
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knot in the terminology of [11, §5]. This proves the claim that λ(Y ) − pλ(Y0) =

(σ(W )− pσ(W0))/8. □

Let Y, Y0 be as in Theorem 5.1. Then by [17, Theorem 1.1], we have an inequality

rk(HF+
red(Y )) ≥ p rk(HF+

red(Y0)). Combined with Theorem 5.1, this gives:

p rk(HF+
red(Y0)) ≤ rk(HF+

red(Y )) ≤ p rk(HF+
red(Y0)) + (δ(−Y )− δ(p)∞ (−Y )).

In particular, the equality δ
(p)
∞ (−Y ) = δ(−Y ) can only happen if rk(HF+

red(Y )) =

p rk(HF+
red(Y0)). Hence we obtain:

Corollary 5.2. Let Y, Y0 be as in Theorem 5.1. If rk(HF+
red(Y )) > p rk(HF+

red(Y0))

then δ
(p)
∞ (−Y ) < δ(−Y ).

6. Free actions

Suppose p does not divide a1a2 · · · ar. Then the restriction of the S1-action

on Y = Σ(a1, . . . , ar) acts freely on Y . Let Y0 = Y/Zp be the quotient. Then

Y is a rational homology sphere. In fact if Y = M(e0, (a1, b1), . . . , (ar, br)), then

it is easily seen that Y0 = M(pe0, (a1, pb1), . . . , (ar, pbr)). It is easy to see that

H1(Y0;Z) ∼= Zp and thus Y0 has exactly p spinc-structures. Further, the pullback

to Y of any spinc-structure on Y0 must coincide with the unique spinc-structure on

Y .

Theorem 6.1. For any spinc-structure s0 on Y0, we have

δ(p)∞ (Y )− δ(Y ) = rk(HF+
red(Y ))− rk(HF+

red(Y0, s0)).

Proof. Set G = Zp and H∗
G = H∗

G(pt;F). By choosing a G-invariant metric on Y ,

we may construct a S1 × G-equivariant Conley index for (Y, s), which we denote

by I(Y, s), here s denotes the unique spinc-structure on Y . As shown in [24, §3],

the Conley index I(Y0, s0) for (Y0, s0) can be identified with the Zp-fixed point set

I(Y, s)Zp of I(Y, s). Thus we have isomorphisms

H̃∗
S1×G(I(Y, s)

Zp ;F) ∼= H̃∗
S1×G(I(Y0, s0);F)

∼= H̃∗
S1(I(Y0, s0),F)⊗F H

∗
G

∼= HSW ∗(Y0, s0)⊗F H
∗
G.

It should be noted that the above isomorphisms only preserve relative gradings.

Recall that H∗
G
∼= F[Q], deg(Q) = 1 if p = 2 and H∗

G
∼= F[R,S]/(R2), deg(R) = 1,

deg(S) = 2 if p is odd. In the case p = 2, define S = Q2. Let S = {1, S, S2, . . . }.
Then S is a multiplicative subset of H∗

S1×G = H∗
S1×G(pt;F) ∼= H∗

G[U ]. The locali-

sation theorem in equivariant cohomology [12, III, Theorem 3.8] applied to the pair

(I(Y, s), I(Y, s)Zp) and multiplicative set S implies that the inclusion I(Y, s)Zp →
I(Y, s) induces an isomorphism

(6.1) S−1H̃∗
S1×G(I(Y, s);F) → S−1H̃∗

S1×G(I(Y, s)
Zp ;F).

Since H̃∗
S1×G(I(Y, s);F) ∼= HSW ∗

Zp
and as we have shown above, H̃∗

S1×G(I(Y, s)
Zp ;F) ∼=

HSW ∗(Y0, s0)⊗F H
∗
G, we get an isomorphism

S−1HSW ∗
Zp
(Y, s) ∼= HSW ∗(Y0, s0)⊗F S

−1H∗
G.
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This is an isomorphism of relatively graded H∗
S1×G-modules.

For the rest of the proof we restrict to the case that p is odd. The proof in the

case that p = 2 is similar. We have

HSW ∗(Y0, s0) ∼= HF+
∗ (Y0, s0) ∼= F[U ]θ0 ⊕HF+

red(Y0, s0)

for some θ0. Combined with (6.1), we have an isomorphism

(6.2) S−1HSW ∗
Zp
(Y, s) ∼=

F[U,R, S, S−1]

(R2)
θ0 ⊕

HF+
red(Y0, s0)[R,S, S−1]

(R2)
.

On the other hand, the proof of Proposition 3.6 gives an isomorphism

HSW ∗
Zp
(Y, s) ∼= E∞(Y ) ∼=

F[U,R, S]

(R2)
Umθ ⊕ E∞(Y )red

under which the F[U ]-module structure is given by an endomorphism of the form

Û = U(0,2) + U(1,1) + · · · with U(0,2) = U . Localising with respect to S gives an

isomorphism

S−1HSW ∗
Zp
(Y, s) ∼= E∞(Y ) ∼=

F[U,R, S, S−1]

(R2)
Umθ ⊕ S−1E∞(Y )red.

Define W ⊆ S−1HSW ∗
Zp
(Y, s)) to be the set of x ∈ S−1HSW ∗

Zp
(Y, s)) such that for

each j ≥ 0, there exists a k ≥ 0 for which Ukx ∈ Fj(Y ). The proof of Proposition

3.6 demonstrates that W ∼= S−1E∞(Y )red. On the other hand, the isomorphism

(6.2) clearly shows that W ∼= HF+
red(Y0, s0)[R,S, S−1]/(R2). Combining these, we

have an isomorphism

S−1E∞(Y )red ∼= HF+
red(Y0, s0)[R,S, S−1]/(R2).

In any fixed degree j, the rank of (HF+
red(Y0, s0)[R,S, S−1]/(R2))j is equal to

rk(HF+
red(Y0, s0)), hence the same is true of S−1E∞(Y )red. From [5, Lemma 5.7],

we have that S : Ep,q
r (Y ) → Ep+2,q

r (Y ) is an isomorphism for all large enough p.

Hence for large enough p, E2p,∗
r (Y ) is independent of p and we denote the resulting

group by M∗
r . We similarly define M∗

∞. Clearly the rank of (S−1E∞(Y )red)
j for

any j equals rk(M∞)red. So we have proven that

rk(HF+
red(Y0, s0)) = rk(M∞)red.

Set sr = rk(Mr)red. It follows from [5, Lemma 5.8] that (Mr+1)red is a subquotient

of (Mr)red. Hence the sequence s2, s3, . . . is decreasing and equals rk(M∞)red for

sufficiently large r. Furthermore, M2
∼= HF+(Y ), so s2 = rk(HF+

red(Y )).

Recall from the proof of Proposition 3.6 that

Er(Y ) ∼=
F[U,R, S]

(R2)
Umrθ ⊕ Er(Y )red

for some increasing sequence 0 = m0 ≤ m1 ≤ . . . . Suppose mr+1 > mr. Then

dr(U
mr+jθ) ̸= 0 for 0 ≤ j ≤ mr+1 −mr. Notice that Umr+jθ has bi-degree (0, a)

where a = 2mr+2j+d(Y ) is even, hence dr(U
mr+jθ) has bi-degree (r, a+(1− r)).

But all elements of Er(Y )red have bi-degree (u, v) with v odd (because Er(Y )red is a

subquotient ofHF+
red(Y )[R,S]/(R2) andHF+

red(Y ) is concentrated in odd degrees).

Hence a + (1 − r) must be odd, which means that r is even. So we can regard dr
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as mapping into (Mr)red. Hence the rank of (Mr+1)red is at least mr+1 −mr less

than the rank of (Mr)red, that is,

(6.3) sr − sr+1 ≥ mr+1 −mr.

We claim that this inequality is actually an equality. Equivalently Mr+1 is the

quotient of Mr by the span of {dr(Umr+j)}, 0 ≤ j ≤ mr+1 − mr. This is also

equivalent to saying that dr(x) = 0 for all r ≥ 2 and all x ∈ Er(Y )red. Consider a

non-zero homogeneous element x ∈ Er(Y )a,bred. Since Er(Y )red is a subquotient of

HF+
red(Y )[R,S]/(R2) and HF+

red(Y ) is concentrated in odd degrees, we have that

b is odd. Then dr(x) has bi-degree (a + r, b + 1 − r). If dr(x) ̸= 0, then b + 1 − r

must be odd and so r must be odd. Thus in order to prove the claim, it is sufficient

to show that dr = 0 for all odd r.

Consider the equivariant Seiberg–Witten–Floer cohomology of Y with integral

coefficients HSW ∗
Zp
(Y ;Z). This is a module over H∗

Zp
(pt;Z) ∼= Z[S]/(pS) where

deg(S) = 2. The key point to observe here is that H∗
Zp
(pt;Z) is concentrated in even

degrees. There is a spectral sequence (Ep,q
r (Y ;Z), dr) and a filtration {Fj(Y ;Z)}

such that E∞(Y ;Z) is the associated graded module of the filtration. The mod p

reduction map Z → Zp = F induces a morphism of HSW ∗(Y ;Z) → HSW ∗(Y ;F).
There is also a reduction map of the equivariant Floer cohomologies, the filtrations

and the spectral sequences. The results of [35] also hold with integer coefficients so

HF+(Y ;Z) ∼= Z[U ]d(Y ) ⊕HF+
red(Y ;Z)

and HF+
red(Y ;Z) is concentrated in odd degrees. By the universal coefficient theo-

rem HF+
red(Y ;F) ∼= HF+

red(Y ;Z)⊗Z F. Furthermore, we have that

E2(Y ;Z) ∼= H∗(Zp;HSW ∗(Y ;Z))

∼=
Z[U, S]
(pS)

θ ⊕
HF+

red(Y ;Z)[S]
(pS)

.

Clearly every homogeneous element in Z[U, S]/(pS)θ has bi-degree (a, b) where a

and b are even and every homogeneous element in HF+
red(Y ;Z)[S]/(pS) has bi-

degree (a, b) where a is even and b is odd. From this and the fact that the im-

age of dr : Er(Y ;Z) → Er(Y ;Z) is contained in Er(Y ;Z)red it follows easily that

dr : Er(Y ;Z) → Er(Y ;Z) is zero for odd r.

Now using induction on r one shows the following properties hold: (1) any

x ∈ Ea,b
r (Y ) with a even is in the image of the reduction map Ea,b

r (Y ;Z) → Ea,b
r (Y ),

(2) every x ∈ Ea,b
r (Y ) with a odd is of the form x = Ry where y is in the image of

the reduction map Ea,b
r (Y ;Z) → Ea,b

r (Y ) and (3) dr : Er(Y ) → Er(Y ) is zero for

even r. In particular, this proves the claim that dr : Er(Y ) → Er(Y ) is zero for all

odd r and hence the inequality (6.3) is actually an equality:

(6.4) sr − sr+1 = mr+1 −mr.

Let s = rk((M∞)red) = rk(HF+
red(Y0, s0)) and let m = limr→∞ mr. Summing (6.4)

from r = 2 to infinity gives s2 − s = m−m2. But m2 = 0 and s2 = rk(HF+
red(Y )),

so we get m = rk(HF+
red(Y )) − rk(HF+

red(Y0, s0)). But recall from the proof of
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Proposition 3.6 that δ
(p)
∞ (Y ) = δ(Y ) +m, hence we get

δ(p)∞ (Y ) = δ(Y ) + rk(HF+
red(Y ))− rk(HF+

red(Y0, s0)).

□

We will take s0 to be the restriction to Y0 of the canonical spinc-structure on the

negative definite plumbing which Y0 bounds. With this choice of spinc-structure,

the computation of HF+(−Y0, s0) is easily obtained through the graded roots al-

gorithm [31]. Let ∆p(n) denote the delta function for (Y0, s0). Then (since e0 < 0)

we have

(6.5) ∆p(n) = 1 + npe0 −
r∑

j=1

⌈
npbj
aj

⌉
Proposition 6.2. We have that ∆p(n) ≥ 0 for n > N/p. In particular, if p > N ,

then HF+
red(−Y0, s0) = 0.

Proof. Following [6, §3], we let f(x) = ⌈x⌉ − x. Then from Equations (3.3) and

(6.5), we see that

∆p(n) = 1 +
np

a1 · · · ar
−

r∑
j=1

f

(
npbj
aj

)
.

For any integer m we have f(m/aj) ≤ 1− 1/aj , hence

(6.6) ∆p(n) ≥ 1 +
np

a1 · · · ar
− r +

r∑
j=1

1

aj
.

Now suppose that pn > N . Thus

pn > a1 · · · an

(r − 2)−
r∑

j=1

1

aj

 .

Re-arranging, we get

(1− r) +
np

a1 · · · ar
+

r∑
j=1

1

aj
> −1.

Combined with (6.6), we get ∆p(n) > −1. But ∆p is integer-valued, so ∆p(n) ≥
0. □

Lemma 6.3. We have that rk(HF+
red(−Y )) > rk(HF+

red(−Y0, s0)) unless r = 3

and up to reordering (a1, a2, a3) is one of the following:

(2, 3, 5), (2, 3, 7), (2, 3, 11), (2, 3, 13), (2, 3, 17), (2, 5, 7), (2, 5, 9), (3, 4, 5), (3, 4, 7).

Proof. We assume that Y is not Σ(2, 3, 5) and hence N > 0. Let Np = ⌊N/p⌋. By
Proposition 6.2 we only need to consider ∆p(x) for x ∈ [0, Np].

In the proof we make use of abstract delta sequences [17, §3]. Let Pp = G∩[0, Np].

Consider the map ϕ : Pp → [0, N ] given by ϕ(n) = np. From Equation (6.5) it

is immediately clear that ∆(np) = ∆p(n), hence ϕ identifies the delta sequence

(Pp,∆p) with a subsequence of the delta sequence (P,∆). This gives the inequality
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rk(HF+
red(−Y )) ≥ rk(HF+

red(−Y0, s0)) by [17, Proposition 3.5]. To refine this to a

strict inequality we will show that (except for the cases listed in the statement of

the lemma) there exists an x ∈ P \ϕ(Pp) such that 2x ≤ N . In this case {x,N −x}
defines a delta subsequence of (P,∆) disjoint from ϕ(Pp) and then by [17, Corollary

3.12] we obtain a strict inequality rk(HF+
red(−Y )) > rk(HF+

red(−Y0, s0)), as the

module Hred corresponding to {x,N − x} has rank 1.

We seek an x ∈ P \ ϕ(Pp) such that 2x ≤ N . Equivalently x ∈ P , p does not

divide x and 2x ≤ N . Reorder a1, . . . , ar such that a1 > a2 > · · · > ar. Consider

x = a2a3 · · · ar. It follows that p does not divide x as p is coprime to a2, . . . , ar and

we also have that x ∈ P . Hence we obtain a strict rank inequality provided that

2x ≤ N . Suppose on the contrary that 2x > N , that is,

2a2 · · · ar > a1 · · · ar

(r − 2)−
r∑

j=1

1

aj

 .

Re-arranging, this is equivalent to

(6.7)
3

a1
+

1

a2
+

1

a3
+ · · ·+ 1

ar
≥ (r − 2).

Since aj ≥ 2 for all j and at most one can be equal to 2, we get that

3

a1
+

1

a2
+ · · ·+ 1

ar
<

3

a1
+

(r − 1)

2
,

hence
3

a1
+

(r − 1)

2
> (r − 2).

From a1 > a2 > · · · > ar ≥ 2, we see that ar ≥ r + 1, hence

3

r + 1
+

(r − 1)

2
> (r − 2)

which simplifies to (r + 1)(r − 3) < 6. If r ≥ 5, then (r + 1)(r − 3) ≥ 12, so this

leaves only the cases r = 3, 4.

If r = 4, then since a4 ≥ 2, a3 ≥ 3, a2 ≥ 4, a1 ≥ 5, we have

3

a1
+

1

a2
+

1

a3
+

1

a4
≤ 3

5
+

1

4
+

1

3
+

1

2
=

101

60
< 2.

Hence (6.7) can not be satisfied with r = 4.

Now suppose that r = 3. If a3 ≥ 4, then a2 ≥ 5, a1 ≥ 6 and so

3

a1
+

1

a2
+

1

a3
≤ 3

6
+

1

5
+

1

4
=

19

20
< 1

and so (6.7) can only be satisfied if a3 = 2 or 3.

If a3 = 3 and a4 ≥ 5, then a1 ≥ 7 (since a1 must be coprime to a3 = 3) and so

3

a1
+

1

a2
+

1

a3
≤ 3

7
+

1

5
+

1

3
=

101

105
< 1.

So (6.7) implies that a4 = 4. Then since 3/8 + 1/4 + 1/3 = 23/24 < 1, it follows

that a1 < 8. Hence if a3 = 3, then (a1, a2, a3) = (5, 4, 3) or (7, 4, 3).
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Lastly, suppose that a3 = 2. If a2 > 5, then a2 ≥ 7 and a1 ≥ 9 (since a1, a2
must be coprime to a3). So

3

a1
+

1

a2
+

1

a3
≤ 3

9
+

1

7
+

1

2
=

41

42
< 1.

So a2 ≤ 5, hence a2 = 3 or 5.

If a3 = 2 and a2 = 5, then (6.7) implies a1 ≤ 10, hence (a1, a2, a3) = (7, 5, 2) or

(9, 5, 2).

If a3 = 2 and a2 = 3, then (6.7) implies a1 ≤ 18, hence (a1, a2, a3) is one of

(5, 3, 2), (7, 3, 2), (11, 3, 2), (13, 3, 2), (17, 3, 2). □

Theorem 6.4. We have that rk(HF+
red(−Y )) > rk(HF+

red(−Y0, s0)) except in the

following cases:

(1) Y = Σ(2, 3, 5) and p is any prime.

(2) Y = Σ(2, 3, 11) and p = 5.

In case (1) we have rk(HF+
red(−Y )) = rk(HF+

red(−Y0, s0)) = 0 and in case (2) we

have rk(HF+
red(−Y )) = rk(HF+

red(−Y0, s0)) = 1.

Proof. By Lemma 6.3, we only need to consider the case that r = 3 and up to

reordering (a1, a2, a3) is one of:

(2, 3, 5), (2, 3, 7), (2, 3, 11), (2, 3, 13), (2, 3, 17), (2, 5, 7), (2, 5, 9), (3, 4, 5), (3, 4, 7).

In the case Y = Σ(2, 3, 5) we have that rk(HF+
red(−Y )) = 0 and N < 0. Hence we

also have rk(HF+
red(−Y0)) = 0 by Proposition 6.2.

In the remaining cases we have rk(HF+
red(−Y )) > 0 and N > 0. Hence if p > N

then rk(HF+
red(−Y )) > rk(HF+

red(−Y0)) = 0, by Proposition 6.2. So we only

need to consider primes such that p ≤ N and coprime to a1, a2, a3. This leaves

only finitely many cases of 4-tuples {(a1, a2, a3, p)} to consider. We check each

of these cases by directly computing the ranks of HF+
red(−Y ) and HF+

red(−Y0).

The results are shown in Table 1. By inspection we see that rk(HF+
red(−Y )) >

rk(HF+
red(−Y0, s0)) in all cases except for Y = Σ(2, 3, 11) and p = 5.

□

Theorem 6.5. Let Y = Σ(a1, a2, . . . , ar) be a Brieskorn homology sphere and let

p be a prime not dividing a1 · · · ar. Then δ
(p)
∞ (Y ) > δ(Y ) except in the following

cases:

(1) Y = Σ(2, 3, 5) and p is any prime.

(2) Y = Σ(2, 3, 11) and p = 5.

In both cases we have δ
(p)
∞ (Y ) = δ(Y ) = 1.

Proof. Theorems 6.1 and 6.4 imply that δ
(p)
∞ (Y ) ≥ δ(Y ) with equality only in the

cases listed. In these cases, we have δ
(p)
∞ (Y ) = δ(Y ) and δ(Y ) = 1 [36, §8]. □
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(a1, a2, a3) N rk(HF+
red(−Y )) p rk(HF+

red(−Y0))

(2, 3, 7) 1 1 none

(2, 3, 11) 5 1 5 1

(2, 3, 13) 7 2 5 0

7 1

(2, 3, 17) 11 2 5 1

7 0

11 1

(2, 5, 7) 11 2 3 0

11 1

(2, 5, 9) 17 2 7 1

11 0

13 0

17 1

(3, 4, 5) 13 2 2 0

7 0

11 0

13 1

(3, 4, 7) 23 2 2 1

5 0

11 1

13 0

17 0

19 0

23 1

Table 1
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