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• Preliminaries on twisted K-theory and loop groups LG.

• Dirac family construction of classes in K ∗G(G,Ω).

• Generalisation to gauge groups G and obstacles.

• Fractional loop group LqG and 1-cocycles.
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Twisted K-theory

• Let X be a paracompact, Hausdorff topological space and H an
infinite-dimensional complex separable Hilbert space.

• Let Fred(H) denote the space of bounded Fredholm operators
on H (with norm topology), and Fred∗(H) the subspace of
bounded self-adjoint Fredholm operators with both positive and
negative essential spectrum.

• (Atiyah-Jänich)

K 0(X ) = [X ,Fred(H)], K 1(X ) = [X ,Fred∗(H)]

• A gerbe introduces a twist in K-theory on X and is characterised
by an element Ω ∈ H3(X ,Z).



Twisted K-theory
• Recall that PU(H) = U(H)/S1 ' K (Z,2). Let PΩ denote a

principal PU(H)-bundle determined by its Dixmier-Douady class
Ω ∈ H3(X ,Z).

• The projective unitary group PU(H) acts continuously on
Fred(H) by the conjugation action of U(H). Let

PΩ(Fred) = PΩ ×PU(H) Fred(H)

denote the associated bundle of Fredholm operators on X .

• Twisted K-theory groups are defined by

K 0(X ,Ω) = π0(Γc(X ,PΩ(Fred)))

K 1(X ,Ω) = π0(Γc(X ,PΩ(Fred∗)))

i.e. homotopy classes of compactly supported continuous
sections of the associated bundles.



Twisted K-theory

• A twisted K -class is a family of locally defined Fredholm
operators Ti : Ui → Fred(H) satisfying

Tj (x) = Adĝij
(Ti )(x)

on contractible intersections, where ĝij are lifts of the transition
functions gij : Ui ∩ Uj → PU(H) to the unitary group U(H).

• Equivalently, a twisted K -class is a PU(H)-equivariant map
T : PΩ → Fred(H), i.e.

T (pg) = g−1T (p)g

for all g ∈ PU(H).



Loop group

• Let G be a compact Lie group. The loop group LG = C∞(S1,G)
has many central extensions

1→ S1 → L̂G→ LG→ 1 .

For G simple and simply connected, there is a universal central
extension.

• Construction: L̂G = (DG ×γ S1)/C∞(S2,G)0

• The principal S1-bundle L̂G is determined by its first Chern class
up to isomorphism. When G is connected and simply connected,
the transgression map

H2(LG,Z)→ H3(G,Z)

is an isomorphism.



Central extension
• The corresponding Lie algebra extension

0→ iR→ L̂g→ Lg→ 0

is determined by the 2-cocycle

c0(X ,Y ) =
k

2π

∫
S1
〈X ,dY 〉g ,

where 〈·, ·〉g is a symmetric invariant bilinear form on g.

• In Fourier basis, the generators T a
m = T azm of the Lie algebra L̂g

satisfy

[T a
m,T

b
n ] =

dimg∑
c=1

λabcT c
m+n + kmδm,−n〈T a,T b〉g

where the central element k is called the level.



Positive energy representations of LG

• LG has a distinguished class of unitary irreducible integrable
projective highest weight representations V(k,λ), labelled by the
level k ∈ Z+ and dominant integral weights λ of g.

• V(k,λ) can be obtained from geometric quantization of affine
coadjoint orbits at level k .

• For a given level k , there are only finitely many irreducible
representations.

• The free abelian group generated by isomorphism classes of
irreducible representations,

R(LG, k) = R(G)/Ik

forms a ring under fusion product, the Verlinde algebra.



Twisted K-theory class on G
• Let G be a compact, connected, simply connected, simple Lie

group. Then
H3(G,Z) = H3

G(G,Z) = Z

(with generator Ω0 = 1
24π2 Tr(g−1dg)3, so that Ω = kΩ0).

• Let AS1 denote the affine space of connections on Q = S1 ×G.

• We have the universal ΩG-bundle

ΩG→ AS1 → G ,

where ΩG is the group of based loops, acting on AS1 by gauge
transformations

ΩG ×AS1 → AS1 , (g,A) 7→ Ag = g−1Ag + g−1dg ,

and the projection AS1 → G is given by the holonomy around the
circle. Note that LG = ΩG o G.



Twisted K-theory class on G

• The gerbe associated to Ω = kΩ0 is given by

PΩ = AS1 ×Φ PU(H)

where Φ : LG→ PU(H) is a level k projective representation.

• Next we want to construct a PU(H)-equivariant family of
Fredholm operators T : PΩ → Fred(H).

• Let V(k,λ) be a level k representation and S(h∨,ρ) denote the spin
representation of L̂g.

• S(h∨,ρ) is constructed by fixing a representation of the Clifford
algebra Cliff (Lg),

{ψa
m, ψ

b
p} = 2δabδm,−p .



Twisted K-theory class on G
• The operators are realised explicitly as bilinears in the Clifford

generators

K a
m = −1

4

∑
b,c,n

λabc : ψb
m−nψ

c
n : .

• The full Hilbert space H = V(k,λ) ⊗ S(h∨,ρ) carries a tensor
product representation of L̂g of level k + h∨. The DD-class of the
gerbe is Ω = (k + h∨)Ω0, where the degree shift h∨ is the dual
Coxeter number of G.

• Consider the affine cubic Dirac operator

6∂ = i
∑
a,m

:
(

T a
m ⊗ ψa

−m +
1
3

1⊗ ψa
mK a
−m

)
:

= i :
(∑

a,m

T a
m ⊗ ψa

−m −
1

12

∑
a,b,c,m,n

1⊗ λabcψa
mψ

b
−m−nψ

c
n

)
:

acting on the Hilbert space H = V(k,λ) ⊗ S(h∨,ρ).



Twisted K-theory class on G

• Next perturbe 6∂ by coupling to the Clifford action of A ∈ AS1 ,

6∂A = 6∂ + i k̄〈ψ,A〉

where 〈ψ,A〉 =
∑

a,m ψ
a
mAa
−m and k̄ =

(
k+h∨

4

)
.

• This produces a continuous family of self-adjoint unbounded
Fredholm operators 6∂A that is L̂G-equivariant,

Φ(g)−1 6∂AΦ(g) = 6∂Ag

where Φ : LG→ PU(H) is the level k + h∨ embedding of the
loop group.



Twisted K-theory class on G

• Replacing 6∂A by the approximate sign operator

FA =
6∂A

(1 + 6∂2
A)

1
2
,

we obtain a bounded family of Fredholm operators.

• T : PΩ → Fred(H), given by T = g−1FAg with g ∈ PU(H),
determines a class in G-equivariant twisted K-theory on G. Parity
of dimG determines whether the class is in even or odd K-theory.

Theorem. (Freed-Hopkins-Teleman)
The bounded Dirac family provides an isomorphism of graded free
abelian groups

R(LG, k) ∼= K dim G
G (G, k + h∨) .



Gauge groups
• LG is the gauge group of the trivial bundle Q = S1 ×G.

• Natural generalisation is to replace S1 by a higher dimensional
compact manifold X .

• We have a principal G-bundle Q → X with gauge group
G = Γ(X ,Ad Q).

• Objective: construct classes in K ∗(A/G,Ω).

• Obstacles to merely reproducing the standard theory for the
circle:

1. No natural triangular decomposition giving meaning to the highest
weight condition.

2. Divergencies and absence of a canonical central extension.



Example: Fock representation

• Let B = {ψ(u), ψ†(v) | u, v ∈ H} denote the CAR C∗-algebra.

• Fix a polarisation H = H+ ⊕H− with projections P± : H → H±
and ε = P+ − P−

(
= 6D
|6D|

)
.

• Free Fock space

F0 = B/〈ψ†(P−u), ψ(P+v)〉 =
⊕
p,q

p∧
H+ ⊗

q∧
H∗− .

• (Shale-Stinespring) g ∈ G is implementable on F0 if and only if
[ε,g] is Hilbert-Schmidt (i.e. |[ε,g]|2 is trace class).

• Asymptotic analysis: [ε,g] is Hilbert-Schmidt if and only if
ord([ε,g]) < −dim(X )/2.



Example: Fock representation
• However ord([ε,g]) = −1, so there is a UV-divergency when

dim(X )>1.

• Regularization: Pick an appropriate family of unitaries
R : A → U(H) and introduce

ω(g; A) = R†Ag gRA

such that Tr|[ε, ω(g; A)]|2 <∞.

• For instance when dim X = 3, set RA = exp( i
4 |6D|

−1[6D, 6A]|6D|−1).

• ω is an operator-valued 1-cocycle:

ω(gg′; A) = ω(g; Ag′
)ω(g′; A)

• Associated Hilbert bundle F = A×ω F0, where

(A, v) ∼ (Ag , ω̂(g; A)−1v) .



Fractional loop group: motivation

• There are many different kinds of loop groups,

LpolG ⊂ LratG ⊂ LanalG ⊂ LG ⊂ LcG

where LcG = C0(S1,G) is the Banach Lie group of continuous
loops.

• We wish to study the "thicker" loop group LqG, by relaxing the
smoothness property of maps g : S1 → G.

• There is still a good notion of triangular decomposition, but the
central extension breaks down.



The fractional loop group LqG

Definition.
Let G denote a compact Lie group and fix an embedding G ⊂ UN(C).
The fractional loop group LqG for Sobolev exponent q > 1

2 is the
Hilbert Lie group defined by

LqG = {g ∈ Map(S1,G) | ‖g‖2
2,q =

∑
m∈Z

(1 + m2)q |ĝm|2 <∞}

where |ĝm| is the standard matrix norm of the mth Fourier component
of g : S1 → G.

Remark: Clearly LG ⊂ LqG, and by the Sobolev embedding theorem
we also have LqG ⊂ LcG.



Spectral triple

• There is a natural spectral triple arising here,

(A,Dq ,H)

where H = L2(S1), an associative, commutative ∗-algebra
A = LqC and a fractional Dirac operator on the circle defined by

Dq f (x) =
∑
m∈Z

sign(m)|m|q f̂meimx .

• The spectral dimension is given by 1
q .

• LqG is the gauge group in "non-commutative" Yang-Mills theory.



Critical value q = 1
2

• Recall that the central extension L̂g is fixed by the 2-cocycle

c0(T a
m,T

b
n ) = kmδm,−n〈T a,T b〉g .

By ∣∣∣∣∣∣ df
dx

∣∣∣∣∣∣2
L2

=
∑
m∈Z

m2 |̂fm|2 ,

it follows that c0(X ,Y ) is well-defined for X ,Y ∈ Lqg if and only if
q ≥ 1

2 .

• LG is not dense in L 1
2
G.

• For q ≤ 1
2 , the Sobolev spaces Hq(S1) are not algebras!



The fractional loop group LqG

• LqG acts as operators on the Hilbert space H = L2(S1,CN),
M : LqG→ GL(H), g 7→ Mg by pointwise multiplication

(Mgψ)(x) = g(x)ψ(x) .

• The sign operator ε = Dq

|Dq | defines an orthogonal decomposition
H = H+ ⊕H− into positive and negative Fourier modes.

• Consider the p-th Schatten class

L2p = {A ∈ B(H) | ‖A‖2p =
[
Tr(A†A)p] 1

2p <∞}

which is a two-sided ideal in the algebra of bounded operators
B(H).



The fractional loop group LqG

• The subgroup GLp ⊂ GL(H) is defined by

GLp = {A ∈ GL(H) | [ε,A] ∈ L2p} .

Writing elements in GL(H) in block form with respect to the
Hilbert space polarisation,

A =

(
A++ A+−
A−+ A−−

)
the condition

[ε,A] = 2
(

0 A+−
−A−+ 0

)
∈ L2p

means that the off-diagonal blocks are not “too large".



The fractional loop group LqG

• Given the topology defined by the norm

‖A++‖+ ‖A+−‖2p + ‖A−+‖2p + ‖A−−‖

where
‖a‖ = sup

‖ψ‖=1
‖aψ‖ ,

GLp is a Banach Lie group with the Lie algebra

glp = {X ∈ B(H) | [ε,X ] ∈ L2p} .



Fractional loop group LqG

Proposition.
LqG is contained in GLp, if p ≥ 1

2q .

Definition.
The fractional loop group LqG for real index 0 < q < 1

2 is defined to
be LcG ∩GL 1

2q
, with the induced Banach-Lie structure coming from

the embedding.



Regularisation
• The cocycle defining the central extension L̂qg can be written

c0(X ,Y ) =
1
8

Tr
(
ε[[ε,X ], [ε,Y ]]

)
= Tr

(
X+−Y−+ − Y+−X−+

)
for X ,Y ∈ Lqg. It diverges unless [ε,X ] and [ε,Y ] belong to L2.

• We regularise by shifting by a 1-cochain ηp(X ; F ),

T (X ) 7→ T (X ) + ηp(X ; F ),

where X ∈ Lqg and in component notation T (X ) =
∑

a,m T a
mX a
−m.

• The new commutation relations will be

[T (X ),T (Y )] = T ([X ,Y ]) + cp(X ,Y ; F )

where
cp(X ,Y ; F ) = c0(X ,Y ) + (δηp)(X ,Y ; F ) .



Construction of 1-cochain

• Here ηp(X ; F ) is a 1-cochain parametrised by points on the
Grassmannian,

Grp = GLp/B = {F ∈ GLp|F = F ∗,F 2 = 1,F − ε ∈ L2p} .

• Group action:

LqG ×Grp → Grp , (g,F ) 7→ g−1Fg

• Infinitesimal action:

Lqg×Grp → Grp , (X ,F ) 7→ [F ,X ]

• Note: F − ε = g−1[ε,g] is a “flat connection".



Construction of 1-cochain

• The abelian group Map(Grp,C) is naturally a Lqg module:

(X , f ) 7→ LX f (F ) =
d
dt

f
(

e−tX (F − ε)etX + t [ε,X ]
)∣∣∣

t=0

• Define a 1-cochain by

ηp(X ; F ) =

p−1∑
k=0

Tr(ε(F − ε)2k+1[ε,X ]) .

• This leads to an abelian extension L̂qg = Lqg⊕Map(Grp,C).



Abelian extension

• Explicit formula for the 2-cocycle:

cp(X ,Y ; F ) =

p∑
m=0

Tr

(
(F − ε)2m[ε,X ](F − ε)2p−2mY − (X ↔ Y )

)

• Notice that cp(X ,Y ; F ) respects the triangular decomposition

L̂qg =
(
Lqg+ ⊕ g+

)
⊕
(
h⊕Map(Grp,C)

)
⊕
(
g− ⊕ Lqg−

)
.

• The corresponding abelian group extension L̂qG by Map(Grp,C∗)
can be constructed using the method of path fibration.

• Equivalently, this can be viewed as a S1-central extension of the
Banach Lie groupoid Grp o LqG ⇒ Grp.



Generalised Verma modules

• There is an algebraic formulation of a generalised vacuum
representation Vλ,k = U(L̂qg)/Iλ, where U(L̂qg) is the universal
enveloping algebra generated by the T a

n ’s and ψa
n ’s at level

k + h∨, and Iλ is the left ideal generated by the annihilators.

• This means that the cocycle cp(X ,Y ; F ), when restricted to the
smooth subalgebra LG, is cohomologous to k + h∨ times the
basic cocycle.

• However for q < 1
2 , due to the large abelian ideal in L̂qg, we

cannot construct any invariant hermitian semidefinite form on the
Verma module.



Homotopy 1-Cocycle

• Let F : G→ H be a homotopy equivalence between topological
groups G and H, and fix a representation ρ of H. We can then
produce an operator-valued 1-cocycle by setting

ω(f ; g) = ρ
(
F (g)−1F (fg)

)
.

• This corresponds to a representation of G in the group of
matrices with entries in the algebra of complex functions on G,
but with a G-action on functions through right translation.

• Applying this to LG ' LqG ' LcG, we have ω̂ : LqG × LqG→ L̂G.



L̂qG-equivariant Dirac family

• For any g ∈ LqG, one has

ω̂(f ; g)−1 6∂ω̂(f ; g) = 6∂ + i k̄ < ψ,ω(f ; g)−1∂θω(f ; g) >

where ∂θ is the differentiation with respect to the loop parameter.

• In the case of central extension the connections on LG can be
taken to be left invariant and they are written as a fixed
connection plus a left invariant 1-form A on LG.

• The form A at the identity element is identified as a vector in the
dual Lg∗ which again is identified, through an invariant inner
product, as a vector in Lg defining a g-valued 1-form on the circle.

• The right translations on LG induce the gauge action on the
potentials A.



L̂qG-equivariant Dirac family

• Consider next a perturbation of 6∂ by a function A : LqG→ Lqg,

6∂A = 6∂ + i k̄〈ψ,A〉 .

• The group LqG acts on A by right translation (g · A)(f ) = A(fg).

• Let Φ(g) denote the operator consisting of right translation on
functions and by ω̂(·; g) on values of functions via the LG
representation in the Hilbert space H = V(k,λ) ⊗ S(h∨,ρ).

• Then
Φ(g)−1 6∂AΦ(g) = 6∂Ag

where

(Ag)(f ) = ω(f ; g)−1A(fg)ω(f ; g) + ω(f ; g)−1∂ω(f ; g)



L̂qG-equivariant Dirac family
• The associated abelian extension by Map(LqG, iR) defined by

the 2-cocycle

c̃p(f ; X ,Y ) = [d̂ω(f ; X ), d̂ω(f ; Y )]−

d̂ω(f ; [X ,Y ])− LX d̂ω(f ; Y ) + LY d̂ω(f ; X )

is cohomologous to that previously defined by cp.

• In the case of LqG and the abelian extension, the connections on
S1 ×G are no longer preserved under the action of LqG because
of the modified gauge transformation.

• Geometrically, the LqG-action on functions A has the following
interpretation: the abelian extension L̂qG carries a natural
connection form given by

Ψ = Ad−1
ĝ prc(dĝĝ−1)

where prc is the projection onto the abelian ideal Map(LqG, iR).



L̂qG-equivariant Dirac family

• Restriction to constant maps in Map(LqG,S1) defines a circle
bundle L on LqG, and it carries a connection ∇ induced by the
identification of L as subbundle of L̂qG→ LqG.

• An arbitrary connection in the bundle L is then written as a sum
∇+ A with A ∈ A, and right translation by LqG produces the
above gauge transformation on A.

• Thus, it means that we have to consider the larger family of Dirac
operators parametrized by the space A of all connections of a
circle bundle over LqG.

• This is still an affine space, the extension of LqG acts on it. The
family of Dirac operators transforms equivariantly under the
extension and it follows that it can be viewed as an element in
twisted K-theory of the moduli stack A//LqG.



Upshot
• The study of gauge groups and LqG suggests the following

generalised notion of twisted K-classes.

• Let P → X be a principal G-bundle and fix a 1-cocycle:

ω : P × G → PU(H) , ω(gg; p) = ω(g; pg′)ω(g′; p) .

• A continuous map T : P → Fred(H) with

T (pg) = ω(g; p)−1T (p)ω(g; p)

defines a class in the twisted K-theory group K 0(X , ω).

• Moreover, the abelian extension determined by ω,

1→ Map(P,S1)→ Ĝω
π−→ G → 1

is related to the twisting as follows.



Upshot

• Let τ : P [2] → G denote the difference map defined by
p2 = p1τ(p1,p2).

• Introduce the bundle of abelian groups P = P ×G Map(P,S1),
where

(p,a) ∼ (pg, ĝ−1aĝ)

and π(ĝ) = τ(p,pg).

• The Čech representative of the Dixmier-Douday class is then
given by

εαβγ = [sβ , ĝβγ ĝγαĝαβ] ∈ Ȟ2(X ,P)

where sα : Uα → P, sα = sβgβα are local sections and ĝαβ
denote lifts of the transition functions to the group Ĝω.

Thanks for your attention!


