Crossing borders within mathematics

Pedram Hekmati

Can every natural number $n \in \mathbb{N}$

 be written as a square of an integer?$$
n=a^{2}, \quad a \in \mathbb{Z}
$$

Answer: No. Counterexample: $n=2$.

Can every natural number $n \in \mathbb{N}$ be written

 as a sum of two squares of integers?$$
n=a^{2}+b^{2}, \quad a, b \in \mathbb{Z}
$$

Answer: No. Counterexample: $n=3$.

Can every natural number $n \in \mathbb{N}$ be written as a sum of three squares of integers?

$$
n=a^{2}+b^{2}+c^{2}, \quad a, b, c \in \mathbb{Z}
$$

Answer: No. Counterexample: $n=7$.

Can every natural number $n \in \mathbb{N}$ be written

 as a sum of four squares of integers?$$
n=a^{2}+b^{2}+c^{2}+d^{2}, \quad a, b, c, d \in \mathbb{Z}
$$

Answer: Yes!
(Lagrange's four-square theorem, 1770)

In how many ways can n be written as a sum of four squares?
Let $c(n)$ denote this number.

Example : $\quad 1=1^{2}+0^{2}+0^{2}+0^{2}$
$=0^{2}+1^{2}+0^{2}+0^{2}$
$=0^{2}+0^{2}+1^{2}+0^{2}$
$=0^{2}+0^{2}+0^{2}+1^{2}$
$=(-1)^{2}+0^{2}+0^{2}+0^{2}$
$=0^{2}+(-1)^{2}+0^{2}+0^{2}$
$=0^{2}+0^{2}+(-1)^{2}+0^{2}$
$=0^{2}+0^{2}+0^{2}+(-1)^{2}$
$\Rightarrow c(1)=8$.

NUMBER THEORY \Rightarrow COMBINATORICS

$$
\begin{gathered}
\text { We seek a formula for } \\
c(n)=\left|\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid n=a^{2}+b^{2}+c^{2}+d^{2}\right\}\right|
\end{gathered}
$$

Jacobi's four-square theorem, 1834.

Look at

$$
\eta(q)=\sum_{a \in \mathbb{Z}} q^{a^{2}}=1+2 q+2 q^{4}+2 q^{9}+2 q^{16}+2 q^{25}+\ldots
$$

Then

$$
\eta^{4}(q)=\sum_{a, b, c, d \in \mathbb{Z}} q^{a^{2}+b^{2}+c^{2}+d^{2}}=\sum_{n=0}^{\infty} c(n) q^{n} .
$$

COMBINATORICS \Rightarrow FOURIER ANALYSIS

$$
\text { Set } q=e^{\pi i z} \Rightarrow \eta(z)=\sum_{a \in \mathbb{Z}} e^{\pi i a^{2} z} .
$$

$\eta(z)$ is a holomorphic function if $\operatorname{Im}(z)>0$.

$$
\eta^{4}(z+2)=\eta^{4}(z), \quad \eta^{4}\left(-\frac{1}{z}\right)=-z^{2} \eta^{4}(z)
$$

How many holomorphic functions with these properties?

FOURIER ANALYSIS \Rightarrow COMPLEX GEOMETRY

$\eta^{4}(z)=\sum_{n=0}^{\infty} c(n) e^{\pi i n z}$ is the only one up to scalar multiplication!

Strategy

1. Construct a function $f(z)$ with the above properties. Then

$$
f(z)=c \cdot \eta^{4}(z)
$$

2. Determine the constant c and compare Fourier coefficients.

Use the Eisenstein series to construct $f(z)$.

$$
\begin{gathered}
G_{2}(z)=\sum_{m, n \in \mathbb{Z}} \frac{1}{(m z+n)^{2}} \\
G_{2}(z+1)=G_{2}(z), \quad G_{2}\left(-\frac{1}{z}\right)=z^{2} G_{2}(z)+2 \pi i z
\end{gathered}
$$

Define

$$
f(z)=2 G_{2}(2 z)-\frac{1}{2} G_{2}\left(\frac{z}{2}\right) .
$$

The function $f(z)$ has the Fourier series

$$
\begin{gathered}
f(z)=3 \zeta(2)+4 \pi^{2} \sum_{n=1}^{\infty} \sigma(n)\left(e^{\pi i n z}-4 e^{4 \pi i n z}\right) \\
\text { with } \sigma(n)=\sum_{d \mid n} d
\end{gathered}
$$

Since $c(0)=1$, the scaling constant is $c=3 \zeta(2)=\frac{\pi^{2}}{2}$:

$$
f(z)=c \cdot \eta^{4}(z)=\frac{\pi^{2}}{2} \sum_{n=0}^{\infty} c(n) e^{\pi i n z}
$$

Jacobi's formula (1834)

$$
c(n)=8 \sum_{4|d| n} d
$$

Note that $c(n) \geq 8$ for all $n \in \mathbb{N}$.
\Rightarrow Lagrange's four-square theorem (1770) is a corollary.

NUMBER THEORY \Rightarrow COMBINATORICS \Rightarrow FOURIER ANALYSIS
\Rightarrow COMPLEX GEOMETRY \Rightarrow NUMBER THEORY

