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Abstract

We give an outline of certain aspects of the theory of Monstrous Moonshine, such as the
construction of the Leech lattice, the Monster group, the j-function, and the Moonshine
Module. We also survey some recent generalisations of Monstrous Moonshine.
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Chapter 1

Introduction

Monstrous Moonshine is the study of the unexpected link between the largest finite simple
sporadic group and a certain modular function. We give an introduction to finite simple
groups, and elliptic curves where the modular functions arise. We then give some details on
where Monstrous Moonshine originated and where it is currently.

A finite group is simple if it has no proper normal subgroups. A classification of these
groups was completed around 1980, see [21]. A finite simple group must be one of the
following:

• Cyclic group of prime order,

• Alternating group of index greater than four,

• One of sixteen infinite families of groups of Lie type,

• One of twenty six ‘sporadic’ groups.

An interesting observation from this classification is the finite family of sporadic groups.
The largest group in this family is called the Monster, denoted by M. The difficulty in
studying this group may be attributed to its very large order:

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

In ATLAS [5] is given a collection of character tables for many important finite simple
groups, including the sporadic groups. Importantly the Monster has only 194 irreducible
representations and thus a conveniently small character table. The four smallest irreducible
representations have dimensions 1, 196883, 21296876, and 842609326.

Consider an arbitrary field F. An elliptic curve E(F) is a set of points in F2 satisfying the
Diophantine equation

y2 = x3 +Ax+B

7



8 CHAPTER 1. INTRODUCTION

for some A,B in F. Much like other Diophantine equations, elliptic curves have many im-
portant applications in Number Theory.

The j-invariant is an invariant quantity of elliptic curves which determines precisely when
two elliptic curves have isomorphic solution sets. The set of elliptic curves over the complex
numbers may be parameterised by a complex variable, which results in j being a complex-
valued function. In the variable q = exp(2πiz) the j-invariant has the following Fourier
expansion.

j(z) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + · · · .

Monstrous Moonshine is the theory behind the strange link between the Monster group
and the j-invariant. This connection was first observed by McKay who noticed a rather
‘moonshine’ relationship between the dimensions of irreducible representations of the Monster
and the coefficients of the j-invariant, subtract the constant term 744. This is summarised
in the McKay relations below:

1 = 1

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1
· · ·

Thompson believed that there could exist a graded vector space with each subspace a
representation of the Monster. Such a vector space would have the form V = V0⊕V1⊕V2⊕· · ·
with graded dimension

dim∗V (z) := dimV0
1

q
+ dimV1 + dimV2q + dimV3q

2 · · · .

The theory of Monstrous Moonshine is known to have begun out of two conjectures, one
of which we can now state:

Conjecture 1 (Thompson-Mckay). There exists a vector space V ♮ =
⊕

i Vi and a represen-
tation M → Aut(V ) such that

dim∗V = j − 744.

The Thompson-McKay Conjecture was proven by Frenkel, Lepowsky, and Meurman using
the theory of vertex operators.

V ♮ above is called the moonshine module. It turns out that V ♮ has a much richer structure
than initially anticipated. We call a function a Hauptmodul if it belongs to a special set of
functions we will make precise later, see Subsection 3.3.3. Since each Vi is a representation of
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the Monster, we can take the trace of an element g in each representation. This gives what
is known as the Thompson-McKay series

trgV = tr(g|V0)
1

q
+ tr(g|V1) + tr(g|V2)q + tr(g|V3)q

2 + · · · .

When g = 1 this returns j − 744. This leads us to the second conjecture.

Conjecture 2 (Conway-Norton). The vector space V ♮ =
⊕

i Vi has a representation M →
Aut(V ) and trgV as a Hauptmodul.

The Conway-Norton Conjecture was proven by Borcherds who was awarded a Fields
Medal for his work in 1998.

1.1 Overview

In Chapter 2 we develop important structures that were used to originally prove existence
of the Monster. Such structures include the Leech lattice; the densest packing of spheres
in 24 dimensions, representation theory of finite groups, and the extraspecial 2-groups. An
outline of Griess’ construction of the Monster group is given. In Chapter 3 we introduce the
j-invariant in its natural historical setting. We then move to elliptic functions and finally
modular functions; specifically their role in Monstrous Moonshine. Chapter 4 introduces
affine Lie algebras and vertex operator algebras with motivation from Physics, and gives an
outline of the construction of the moonshine module, which itself shadows Griess’ construction
of the Monster. In Chapter 5 we explore some recent results with moonshine generalised to
other sporadic groups.
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1.2 Prerequisites and Notation

We assume the reader is familiar with introductory Topology, Complex Analysis, Lie Theory,
and Group Theory.

Some notation we use may not be standard. We attempt to make a coherent list of such:

• P(Ω) denotes the power set; that is, the set of all subsets of Ω;

• Z(G) denotes the centre of the group G;

• F and K denote arbitrary fields;

• Aut(G) is the set of automorphisms of some algebraic structure G;

• ∅ is the empty set;

• NG(H) is the normaliser of a subgroup H in a group G;

• CG(H) is the centraliser of a subgroup H in a group G;

• Conj(G) denotes the set of conjugacy classes of a group G;

• A p-group is a group of order pn for some integer n and prime p;

• The size of a finite group G is written |G|;

• The commutator of group elements g, h is written [g, h] = ghg−1h−1;

• If ⋆ is some associative binary operation on G×G, then G⋆n is this operation executed
on G× · · · ×G, n copies of G;



Chapter 2

The Monster

This chapter gives an introduction to codes and integer lattices, character theory in char-
acteristic 0, and extraspecial 2-groups. these structures are important in the construction
of the Monster group, of which an outline is given in the final section. Character theory is
important historically as being involved in the discovery of the Monster group and Monstrous
Moonshine, as discussed in the Introduction.

2.1 Golay Code and Leech Lattice

Section 2.1 aims to introduce even codes and integer lattices. Even codes such as the Ham-
ming and Golay codes are constructed. Integer lattices and their automorphism groups are
defined, and a method to construct them from codes is given. In particular, we construct the
E8 and Leech lattices from the Hamming and Golay codes, respectively.

2.1.1 Codes

Let Ω be a finite set, and P(Ω) its power set. The symmetric difference A△B := (A \B) ∪
(B \A) of two sets A and B in P(Ω) has the following properties:

• A△B ∈ P(Ω);

• A△A = ∅;

• A△ ∅ = A;

• (A△B)△ C = A△ (B △ C);

• A△B = B △A,

11



12 CHAPTER 2. THE MONSTER

for all A,B,C ∈ P(Ω). Hence we can regard P(Ω) as a Z2-vector space (elementary abelian
2-group) with △ for addition and ∅ as zero.

We call a subspace C of P(Ω) a code on Ω if the order of every element in C is divisible
by 2. The only codes we need are those of type II; a code C on Ω is type II if

|Ω| ∈ 4Z, |C| ∈ 4Z for all C ∈ C, Ω ∈ C.

The orthogonal complement C⊥ of C is the set of elements

C⊥ := {S ⊂ Ω | |S ∩ C| ∈ 2Z ∀ C ∈ C} = {S ⊂ Ω | b(S,C) = 0}.

The above is defined in terms of the bilinear form b(A,B) = |A ∩ B| (mod 2) associated
to the quadratic form Q(A) := 1

2 |A| (mod 2). We say a code C is self-orthogonal if C = C⊥.

We consider now the following Hamming codes:

Proposition 2.1.1. There exists a self-orthogonal code of type II on |Ω| = 8.

Proof. Let Ω = Z7 ∪ {∞}, the projective line over Z7. Divide Ω into quadratic residues
(elements that are squares in Z7) and non-quadratic residues;

Q = {0, 1, 2, 4};
N = Ω \Q = {3, 5, 6,∞}.

Then the spaces

C1 := ⟨i+N | i ∈ Z7⟩;
C2 := ⟨−i−N | i ∈ Z7⟩,

are self-orthogonal codes of type II, where i+N := {3 + i, 5 + i, 6 + i,∞}.

We are now ready to construct the Golay code.

Definition 2.1.2. Let C1,C2,Ω be as before. The Golay code is the following self-orthogonal
type II code in P(Ω3):

C12 := ⟨(S, S, ∅), (S, ∅, S), (T, T, T ) | S ∈ C1, T ∈ C2⟩.

M24 := Aut(C12) is one of Mathieu’s sporadic simple groups, simplicity is proved in [15]
p.130.
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2.1.2 Lattices

Codes can be used to construct lattices; Type II codes give rise to type II lattices. In this
subsection we define lattices and show the general idea of constructing lattices from codes,
most importantly the Leech lattice. There are several nontrivial constructions of the Leech
lattice, however the ‘Golay code route’ we will use here demonstrates well some important
properties required for Monstrous Moonshine.

Definition 2.1.3. A lattice L of rank n is a free abelian group generated by an R-linearly
independent set of vectors {a1, ..., an} ⊂ Rn. In other words,

L = a1Z⊕ ...⊕ anZ.

With respect to the canonical symmetric nondegenerate bilinear form ⟨·, ·⟩ : L × L → R
on Rn, L is integral if ⟨x, y⟩ ∈ Z for all x, y ∈ L, and even (or type II) if ⟨x, x⟩ ∈ 2Z for all
x ∈ L. Define the fundamental parallelepiped for L as the set

FL =

{
n∑

i=1

xiai

∣∣∣∣∣ xi ∈ [0, 1)

}
.

We call a lattice unimodular if the volume of FL is 1. This is equivalent to requiring
det(L) :=det(a1, ..., an) to be ±1.

A lattice L is self -dual if it equals its dual

L◦ := {x ∈ Rn | ⟨x, y⟩ ∈ Z ∀y ∈ L}.

The automorphism group of a lattice L denoted Aut(L) is the set of linear operators
which permute the basis elements of the lattice. It has the important subgroup

O(L) := {T ∈ Aut(L) | ⟨Tx, Ty⟩ = ⟨x, y⟩ ∀x, y ∈ L}.

Proposition 2.1.4. Let L be a lattice of rank n with associated symmetric nondegenerate
bilinear form ⟨·, ·⟩. Then Aut(L) is a finite group.

Proof. By change of basis GL(L) is isomorphic to a subgroup of GLn(Z), and is therefore a
group with the discrete topology. Extending the bilinear form to the whole space Rn, we see
that Aut(L) ⊆GL(L) ∩On(R), where

On(R) := {T ∈ GLn(R) | ⟨Tx, Ty⟩ = ⟨x, y⟩ ∀x, y ∈ Rn}.

Let A ∈ On(R) have matrix representation (Aij) in some fixed basis. Then ATA = 1 has
A2

1i + ...+A2
ni = 1 which implies |Aij | ≤ 1 for all i, j, and thus On(R) is compact.

Any discrete subset of a compact set is finite, so Aut(L) must be finite.
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Example 2.1.5. The most basic of lattices is the integer lattice Z with basis element 1.
Aut(Z)={−1, 1}. The fundamental parallelepiped volume is 1 so Z is unimodular.

We note that every automorphism group of a lattice contains the normal subgroup ⟨−1⟩.
We need the following identity:

Proposition 2.1.6 (Index-Determinant Formula). Let L be a rational lattice, and M a
sublattice of L with finite index [L : M ]. Then

det(L)[L : M ]2 = det(M).

Proof. See Theorem 2.3.3 in [15]. The proof applies the Smith Normal Form.

Proposition 2.1.7. Let C be a self-orthogonal type II code on |Ω| = n elements. Define
a basis {a1, ..., an} of Rn indexed by Ω such that ⟨ai, aj⟩ = 2δij, and for short write aC =∑

k∈C ak. Finally define Q :=
∑

k∈Ω akZ. Then the lattice

L(C) := Q+
∑
C∈C

1

2
aCZ

is even unimodular.

Proof. C is a type II code so |Ω| = 4k for some k ∈ N.
Even: Write L ∋ x = xiai for x

i ∈ Z. Then ⟨x, x⟩ = xixj · 2δij =
∑

i 2(x
i)2 ∈ 2Z. Hence

L is even.
Integral: Let x, y ∈ L. Then

⟨x, y⟩ = 1

2
(⟨x+ y, x+ y⟩ − ⟨x, x⟩ − ⟨y, y⟩) ∈ Z.

Hence L is integral.
Unimodular: Q is a sublattice of L = L(C) with quotient L/Q ∼= C. From linear algebra

dimC+dimC⊥ = n which implies dimC = 2k. Since C is a vector space over Z2 we must have
|C| = 22k, and hence [L : Q] = 22k. It is easy to see that det Q = 2|Ω| = 24k, so by Proposition
2.1.6 we have det(L) =det(Q)[L : Q]−2 = 24k · 2−4k = 1, and therefore L is unimodular.

Example 2.1.8. Let C be one of the Hamming codes. Then the lattice L(C) is isometric
to the E8 lattice; the most densely packed lattice in 8 dimensions. This can be seen since
L(C) has rank 8 and E8 is the unique even unimodular lattice of rank 8, see Viazovska’s
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paper [18], work which won her the 2022 Fields medal.

An important lattice we wish to consider is one of 24 unique lattices called the Niemeier
lattices.

Theorem 2.1.9 (Niemeier). There are exactly 24 unique even unimodular lattices of rank
24, up to equivalence. Furthermore, there is a unique such lattice with no length-square 2
vectors, known as the Leech lattice.

Proof. See Niemeier’s famous 1968 classification [1].

Example 2.1.10. The automorphism group of the Leech lattice Λ is nontrivial. Conway’s
group Co0 is defined to be this group. Since ⟨−1⟩◁Co0, we have Co1:=Co0/⟨−1⟩ which
is Conway’s first sporadic finite simple group. There are two others; Co2 and Co3, which
are found by fixing specific points in the Leech lattice and then taking the respective
automorphism groups, see [2].

Proposition 2.1.11. For some integer lattice L define Ln := {a ∈ L | ⟨a, a⟩ = n}. The
Leech lattice Λ has the following properties:

1. Λ2 = ∅;

2. Λ4 = 196560.

Proof. 1 follows from Theorem 2.1.9. For 2 see Theorem 10.4.1 in [15].

Remark 2.1.12. The set of vectors L2 are called the roots of L.

Similar to Example 2.1.8 for the E8 lattice, we can construct the Leech lattice from the
Golay code C12:

Let C12 be the Golay code and A := Ω3 the set of elements for this code. Consider the
even unimodular lattice (a Niemeier lattice)

N := Q+
∑

C∈C12

1

2
aCZ

and the homomorphism θ : Q24 → Q defined by θ(x) := ⟨14aA, x⟩. Since the Golay code is
type II we must have θ(aC) ∈ 2Z for C ∈ C12. We can see that θ(ai) =

1
2 for all roots ai of

N , so consider the rootless sublattice M := N ∩ θ−1(Z) which has index 2 since θ(N) = 1
2Z.

Finally define νi :=
1
4aA− ai for some fixed i, which can be seen to have square-length 4. We

will show that the lattice Λ := M + νiZ must be the Leech lattice.
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• Rootless: This is immediate since M is rootless.

• Unimodular: νi /∈ M but 2νi ∈ M , so M has index 2 in Λ. But M has index 2 in N ,
so det Λ = det N = 1 by Proposition 2.1.6.

2.2 Character Theory

In this section we recall some well-known results from the classical theory of characters,
including orthonormality relations and character tables. G denotes a finite group. All repre-
sentations are over C.

Definition 2.2.1. Let (π, V ) be some representation of G. The character χπ of this repre-
sentation is defined by

χπ : G −→ C
g 7→ Trace(π(g)).

A character is said to be irreducible if its corresponding representation is irreducible.

Theorem 2.2.2. Let IrrC(G) denote the set of irreducible characters of G over C. Then
|IrrC(G)| = |Conj(G)| and

|G| =
∑

χ∈IrrC(G)

|χ(e)|2.

Theorem 2.2.3. Let C(G,C) denote the set of all functions from G to C which are constant
on the conjugacy classes of G. Given the inner product ⟨·, ·⟩ on C(G,C) defined by the formula

⟨σ, τ⟩ := 1

|G|
∑
g∈G

σ(g)τ(g),

(C(G,C), ⟨·, ·⟩) is an inner product space with orthonormal basis IrrC(G).

Example 2.2.4. Characters are constant on conjugacy classes. Thus the above theorems
allow us to form a square table, called the character table, consisting of the characters
of some group. We show the character table for S4.
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Rep\ Conj () (12)(34) (12) (1234) (123)

χ1 1 1 1 1 1
χ2 1 1 −1 −1 1
χ3 2 2 · · −1
χ4 3 −1 1 −1 ·
χ5 3 −1 −1 1 ·

ATLAS [5] contains the character tables of all the sporadic groups. A table of size 194×194
is large enough to describe all irreducible characters of the Monster.

2.3 Extraspecial 2-Groups

This section provides a light introduction to the theory of extraspecial 2-groups. We begin
with standard p-group theory, such as nilpotency, and Frattini subgroups, to motivate the
definition of extraspecial p-groups. We then give a method to construct larger such groups
from the smallest when p = 2, which evidently gives a classification of extraspecial 2-groups.

Proposition 2.3.1. Let G be a finite group, and G′ its derived group. If N⊴G, then G′ ≤ N
if, and only if, G/N is abelian.

Proof. Suppose G/N is abelian. Choose any a, b ∈ G. By hypothesis:

[a, b]N = aNbNa−1Nb−1N

= N,

so [a, b] ∈ N . Since a, b were arbitrary, G′ ≤ N .
Conversely suppose that G′ ≤ N . Again choose any a, b ∈ G. Then:

aNbN = abN

= ab[b−1, a−1]N

= baN

= bNaN,

hence G/N is abelian.

Definition 2.3.2. A group G is nilpotent if G has a normal series

G = G0 ▷G1 ▷ ...▷Gr = 1

such that
Gi

Gi+1
≤ Z

(
G

Gi+1

)
for all 0 ≤ i ≤ r − 1. Such a normal series is called a central series.
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Any abelian group is nilpotent. An important property of nilpotent groups is the follow-
ing:

Proposition 2.3.3. Given a nilpotent group G, let H be a proper subgroup of G. Then
H < NG(H).

Proof. We know that G has a central series:

G = G0 ▷G1 ▷ ...▷Gr = 1.

We first show that [Gi, G] ≤ Gi+1 for all 0 ≤ i ≤ r − 1.

Gi

Gi+1
≤ Z

(
G

Gi+1

)
⇐⇒ [xGi+1, yGi+1] ≤ Gi+1 for x ∈ Gi, y ∈ G

⇐⇒ [x, y]Gi+1 ≤ Gi+1

⇐⇒ [x, y] ∈ Gi+1

⇐⇒ [Gi, G] ≤ Gi+1.

For H < G choose k such that Gk ≤ H and Gk−1 ̸≤ H. Then [Gk−1, H] ≤ Gk ≤ H and
thus Gk−1 > H normalises H.

For a fixed prime p, a p-group is a group in which the order of every element is a power
of p. Next we shall consider several properties of finite p-groups.

Proposition 2.3.4. Every finite p-group is nilpotent.

Proof. See 5.2.4 in [3]. This is an extension of Proposition 2.3.3.

Corollary 2.3.5. Let M < P be a maximal subgroup of a finite p-group P . Then M ◁ P .

Let G be some finite group. The Frattini subgroup Frat(G) of G is the intersection
of all maximal subgroups of G. This subgroup is normal, which can be seen by taking the
intersection of all maximal subgroups as images of automorphisms of G. Then apply the
special case of inner-automorphisms. The next proposition will motivate the definition for
extraspecial groups.

Proposition 2.3.6. Let P be some finite p-group for some prime p. Then the quotient
P/Frat(P ) is isomorphic to a direct sum of copies of Zp.
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Proof. First we show that P ′ ≤ Frat(P ). Choose any maximal subgroup M < P . By
Proposition 2.3.3, M is normal in P . The index of M in P is p, so the quotient P/M is
cyclic of order p. Thus P/M is abelian, and therefore P ′ ≤ M . But M was arbitrary, so
P ′ ≤ Frat(P ).

Secondly we show that xp ∈ Frat(P ) for all x ∈ P . Since P/M is cyclic, xM ∈ P/M has
xpM = (xM)p = M , and thus xp ∈ M . Again, M was arbitrary, so xp ∈ P/M .

Any element in P/Frat(P ) has the form xFrat(P ) for some x ∈ P . We then have
(xFrat(P ))p = xpFrat(P ) = Frat(P ), so every element in P/Frat(P ) has order p, and
therefore P/Frat(P ) is isomorphic to the direct sum of copies of Zp.

We arrive at the type of p-group we wish to study; a type so defined to maximise this
direct sum of Zp’s.

Definition 2.3.7. Let P be a finite p-group. P is called extraspecial if Frat(P ) = Z(P )
and |Z(P )| = p.

Example 2.3.8. The dihedral group D4 of 8 elements is an extraspecial 2-group. In fact,
if we define the product

D4 ⊠D4 := D4 ×D4/{(u, u) ∈ Z(D4)× Z(D4)}

and extend this naturally to finitely many D4, we get (D4)
⊠n as an extraspecial 2-group

for all n.

Evidently every extraspecial 2-group can be formed along the lines of the above example.
Extraspecial 2-groups have order 21+2n for some n ∈ N. There are two types:

• 21+2n
+

∼= (D4)
⊠n;

• 21+2n
−

∼= (D4)
⊠(n−1) ⊠Q8,

where Q8 is the quaternion group. For a proof of this see [6].

2.4 Griess’ Method

In finite group theory many of the sporadics satisfy a hypothesis: A group G satisfies the
hypothesis H(ω,L) if there is an involution z ∈ G such that its centraliser C = CG(z) has an
extraspecial subgroup Q = 22ω+1

+ such that C/Q ∼= L, and such that z is not weakly closed
in Q relative to G (see Definition 2.4.1). The idea is to list all groups satisfying a certain
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hypothesis. If this list has only one group, then we can define said group in terms of the
hypothesis.

We define what it means to be weakly closed relative to some overgroup.

Definition 2.4.1. Let H ≤ K ≤ G be groups. We say that H is weakly closed in K relative
to G if whenever g−1Hg ≤ K we have g−1Hg ≤ H.

This means that for any hypothesis above we have z /∈ CG(Q). This condition is important
because occasionally the extraspecial 2-group will also require CG(Q) = Z(Q); one of the
many conditions in the definition of a large extraspecial 2-group, see [9].

Example 2.4.2. Fischer’s Baby Monster B satisfies the hypothesis H(11,Co2), where Co2
is Conway’s second sporadic group and is the unique such group. See [9]

The existence of any group is usually done by constructing it as the automorphism group
of some algebraic structure. For the sporadics this is unsurprisingly a difficult task. Griess
proved the existence of the Monster group by constructing it as the automorphism group of a
196884-dimensional commutative nonassociative algebra B known as the Griess algebra. We
give an outline of the method he used as it is mirrored in the proof of the Thompson-McKay
Conjecture (see Conjecture 1).

1. Construct the group C above as a well-chosen extension of Co1 by Q ∼= 21+24
+ ;

2. Define a vector space B such that C acts on it in some way; the action is given in [4],
the details of which are omitted due to their complicated nature;

3. Define an algebra structure on B such that C is invariant under this structure, and
hence C ⊆Aut(B);

4. Define an involution σ such that σ /∈ C and σ is invariant under the structure above,
and hence σ ∈Aut(B);

5. Show that the group G := ⟨C, σ⟩ ⊆Aut(B) is isomorphic to the Monster; that is, show
that G is simple and has |G| = |M|.

A uniqueness argument finally shows that M is defined as the simple group satisfying the
hypothesis H(12,Co1). A complete uniqueness proof is given in [8]



Chapter 3

The j-Invariant

In this chapter we introduce elliptic curves and a function which parametrises their isomor-
phism classes, known as the j-function. We then consider complex tori and their relation
to elliptic curves over the complex numbers, which gives us a meromorphic form of the j-
function. Finally we consider q-expansions of important meromorphic functions such as the
j-function and theta series of integer lattices; in particular for the Leech lattice in Chapter
2.

3.1 Elliptic Curves

The aim of this section is to introduce elliptic curves over an arbitrary field. We do this
by first considering a general cubic in normal form, and define what it means for two such
cubics to be isomorphic. We then use appropriate changes of variables to reduce the number
of terms in the cubic, which results in the Weierstrass form of the cubic. The Weierstrass
form allows us to more readily define elliptic curves. Finally we introduce the well-known
j-invariant, which precisely determines when two elliptic curves are isomorphic.

We begin our study of elliptic curves by considering the set of solutions of a general cubic
polynomial over some field F, with characteristic not equal to 2 nor 3, in its normal form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3.1)

The notation of the constants becomes clearer after considering isomorphisms between
normal form cubics.

Definition 3.1.1. An admissible change of variables is one of the form

x = u2x+ r, y = u3y + su2x+ t, (3.2)

where u, r, s, t ∈ F, u ̸= 0.

21
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We say two cubics are isomorphic if there exists an admissible change of variables between
them. A quick calculation gives the coefficients ai of

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

in terms of u, r, s, t, and aj :

• ua1 = a1 + 2s;

• u2a2 = a2 − a1s+ 3r − s2;

• u3a3 = a3 + a1r + 2t;

• u4a4 = a4 − a3s+ 2a2r − a1(t+ rs) + 3r2 − 2st;

• u6a6 = a6 + a4r − a3t+ a2r
2 − a1rt+ r3 − t2.

We transform the cubic from normal form into the Weierstrass form

y2 = x3 +Ax+B, (3.3)

which has only two coefficients to work with. We first make the substitution (x, y) =
(x′, 12(y

′ − a1x
′ − a3)) (requiring char F ̸= 2) which gives

(y′)2 = 4(x′)3 + b2(x
′)2 + 2b4x

′ + b6, (3.4)

where

• b2 = 4a2 + a21;

• b4 = 2a4 + a1a3;

• b6 = 4a6 + a23.

Under the same admissible change of variables as before, the bi’s become

• u2b2 = b2 + 12r;

• u4b4 = b4 + rb2 + 6r2;

• u6b6 = b6 + 2rb4 + r2b2 + 4r3.

The next step is to depress the right-hand side of equation 3.4; that is, to make the
substitution (x′, y′) = (x′′ − b2/12, 2y

′′) (requiring char F ̸= 3), removing the degree 2 term,
which gives

(y′′)2 = (x′′)3 − c4
48

x′′ − c6
864

, (3.5)

where
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• c4 = b22 − 24b4;

• c6 = −b32 + 36b2b4 − 216b6.

Again under our admissible change of variables, the ci’s become

• u4c4 = c4;

• u6c6 = c6.

Now that we have transformed our cubic curve into Weierstrass form, we can define an
elliptic curve.

Definition 3.1.2. An elliptic curve is a cubic curve which can be put in the form

y2 = x3 +Ax+B = f(x)

with f having no repeated roots.

In other words, f and its derivative share no roots. See Figure 3.1 for an example of an
elliptic curve.

We can define a constant, called the discriminant, of a cubic curve, which determines
when such a curve is elliptic. We use the resultant of f and its derivative.

Proposition 3.1.3. Let R be a Unique Factorisation Domain and f, g polynomials in R[x]
given by

f(x) = amxm + ...+ a1x+ a0 and g(x) = bnx
n + ...+ b1x+ b0.

The resultant R(f, g) of f and g is the element of R given by the following (m+n)×(m+n)
determinant:

R(f, g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a0 a1 · · · am 0 · · · 0
0 a0 · · · am−1 am · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · a0 a1 · · · · · · am
b0 b1 · · · bn−1 bn 0 · · · 0
0 b0 · · · bn−1 bn · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · b0 b1 · · · · · · bn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let f, g and R be as above. Then f and g have a common factor of strictly positive degree

in R[x] if, and only if, R(f, g) = 0.

Proof. This is a consequence of Theorem 4.2 of the Appendix of Chapter 2 in [11], the proof
of which uses greatest-common-divisor methods of polynomials.
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Figure 3.1: The elliptic curve y2 = x3 − 5x+ 4

Example 3.1.4. Let f(x) = ax2 + bx + c and g(x) = f ′(x) = 2ax + b be polynomials in
Q[x]. The resultant of f and g is

R(f, g) =

∣∣∣∣∣∣
 c b a

b 2a 0
0 b 2a

∣∣∣∣∣∣
= a(4ac− b2),

which gives an expression for the discriminant of the quadratic f .

Applying the resultant to an arbitrary cubic curve C shows that C is an elliptic curve if,
and only if, its resultant is non-zero. From this we define the discriminant of a cubic curve
to be ∆ := −16R(f, f ′), where the factor of −16 is solely for computational simplicity.

A cubic curve in Weierstrass form 3.3 has discriminant ∆ = −16(4A3 + 27B2). Substi-
tuting in the coefficients of equation 3.5 gives the relation 123∆ = c34 − c26.

It can be seen that under our admissible change of variables, u12∆ = ∆, which leads us
to the j-invariant:

Proposition 3.1.5. Let E be an elliptic curve such that ∆ ̸= 0. Define the j-invariant as
the function on the set of elliptic curves given by

j(E) :=
c34
∆
. (3.6)

Then j is invariant under any admissible change of variables.
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It is immediate to see that two elliptic curves are isomorphic if, and only if, their corre-
sponding j-invariants are equal.

3.2 Elliptic Functions

This section on elliptic functions is split into two subsections:

The first demonstrates that the set of solutions of a given elliptic curve over C can be
turned into a Lie group isomorphic to a real 2-torus. The second subsection uses elliptic
functions to associate an elliptic curve to a given complex torus. Then, using the result of
the first subsection, associates a complex torus to a given elliptic curve.

The main result is that there is a bijection between the set of complex tori and the set of
elliptic curves.

3.2.1 Elliptic Curve Group Law

An elliptic curve E in normal form (Equation 3.1) can be written as a homogeneous polyno-
mial

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z2 −X3 − a2X
2Z − a4XZ2 − a6Z

3 (3.7)

with domain P2(C) := C3 \ {0, 0, 0}/ ∼, where

[x, y, z] ∼ [x′, y′, z′] ⇐⇒ [x′, y′, z′] = [λx, λy, λz] for λ ∈ C∗.

Here P2 is the complex projective plane. Call ∞ := [0, 1, 0] the point at infinity.

For a given elliptic curve E over C we denote E(C) = {[x, y, z] ∈ P2 | F (x, y, z) = 0; z ̸=
0}∪{∞}. Since F is homogeneous, for z ̸= 0 this is equivalent to F (x, y, 1) = 0 which returns
the normal form.

Let P,Q ∈ E(C). We write PQ for the third point of intersection of the line passing
through P and Q. PQ ∈ E(C) since C is algebraically closed. We define P +Q := ∞(PQ);
that is, the third point intersecting the line through ∞ and PQ in P2. It can be seen that ∞
is the identity for this group operation. We note that E(C) forms an abelian group. Since E
is over C, E(C) is a smooth topological group.

Theorem 3.2.1. Let E be an elliptic curve over C. Then E(C) is an abelian Lie group.

We need the following theorem.

Theorem 3.2.2. A real compact connected abelian Lie group is isomorphic to a real torus.

Proof. This is a classical result in the theory of Lie groups.
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Proposition 3.2.3. Let E be an elliptic curve over C. Then E(C) is a real 2-dimensional
compact connected abelian Lie group; hence E(C) ∼= T2 = S1 × S1.
Proof. E(C) is an abelian Lie group following Theorem 3.2.1.

For compactness, let F (X,Y, Z) be the homogeneous polynomial of E given by equation
3.7. It is easy to see that since F is continuous and F : E(C) → {0}, E(C) is closed. Since
E(C) ⊆ P2, it is enough to show that P2 is compact. Let

Ui := {[x1, x2, x3] ∈ P2 | xi ̸= 0}.

Then U1 = {[1, α, β] ∈ P2 | α, β ∈ C} ∼= C2 topologically. Ui are open in and finitely
cover P2.

Connectedness follows since C is algebraically closed; that is, any line connecting discon-
nected components of the group over Q or R has solutions over C and must thus connect
these components.

Finally, since E provides a relation between x, y in the point [x, y, 1], E(C) is 1-dimensional
over C and therefore 2-dimensional over R.

3.2.2 Complex Tori

An elliptic function is a meromorphic function which is doubly-periodic. Given two R-linearly
independent complex numbers ω1 and ω2, we define a complex lattice as Λ := ω1Z + ω2Z.
The elliptic functions we will study are those with periods ω1 and ω2. The reason for this
association is seen when one quotients C by Λ. C/Λ is called a complex torus since it is
homeomorphic to the 2-torus. Elliptic functions associated to Λ are simply meromorphic
functions on C/Λ.

Before introducing the most important of elliptic functions we need the following result:

Proposition 3.2.4. For a complex lattice Λ the series∑
ω∈Λ∗

1

ωs
(3.8)

converges absolutely for all s > 2.

Proof. Let Λ = ω1Z+ω2Z. Any element in Λ has the form n1ω1 + n2ω2. Since Λ is discrete,
there exists a δ > 0 such that |n1ω1+n2ω2| ≥ δ(|n1|+ |n2|) for all ni ∈ Z. There are 4n pairs
(n1, n2) such that |n1|+ |n2| = n, so∑

ω∈Λ∗

1

|ωs|
≤ 1

δs

∑
(n1,n2)∈(Z2)∗

1

(|n1|+ |n2|)s

≤ 1

(4δ)s

∑
n≥1

1

n · ns
,
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which converges when s− 1 > 1 by the p-series test.

The series in equation 3.8 for s = 2k is denoted G2k, k > 1. Note that for odd s the series
is zero.

Definition 3.2.5. Let Λ be a complex lattice. The ℘-function and ξ-function with respect
to Λ defined over the complex plane are the series’

℘(z; Λ) = ℘(z) :=
1

z2
+

∑
ω∈Λ∗

(
1

(z − ω)2
− 1

ω2

)
,

ξ(z; Λ) = ξ(z) :=
1

z
+

∑
ω∈Λ∗

(
1

z − ω
+

1

ω
+

z

ω2

)
.

These series are absolutely convergent since they both grow like
∑

ω 1/ω3.

It can be seen that ℘(z) is elliptic with respect to Λ and ξ′(z) = −℘(z). Our next task is
to show that ℘ satisfies a very special differential equation. We begin by writing ξ, then ℘,
in terms of the series’ G2k.

The geometric series has
1

z − ω
= −

∑
n≥0

zn

ωn+1

for |z| < |ω|. Plugging this into ξ gives

ξ(z) =
1

z
−

∑
ω∈Λ∗

∑
n≥2

zn

ωn+1

=
1

z
−
∑
k≥2

G2kz
2k−1,

which finally has

℘(z) =
1

z2
−
∑
k≥2

(2k − 1)G2kz
2k−2. (3.9)

The differential equation we seek is first-order and non-linear.

Proposition 3.2.6. Let Λ be a complex lattice. The Weierstrass ℘-function on Λ satisfies
the following differential equation:

℘′2 = 4℘3 − g2℘− g3, (3.10)

where g2 = 60G4 and g3 = 140G6.
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Proof. We write the first few terms of ℘′2, 4℘3, and g2℘ in series:

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + · · ·

℘′(z) = − 2

z3
+ 6G4z + 20G6z

3 + · · ·

℘′(z)2 =
4

z6
− 24G4

z2
− 80G6 + · · ·

4℘(z)3 = 4℘(z)

(
1

z2
+ 6G4 + 10G6z

2 + · · ·
)

=
4

z6
+

36G4

z2
+ 60G6 + · · ·

60G2 = 4℘(z) =
60G4

z2
+ 180G2

4z
2 + · · · .

Then
f(z) := ℘′2 − 4℘3 + 60G4℘+ 140G6

is easily seen as an elliptic function with no poles, hence holomorphic. Since f is defined on
the compact complex torus C/Λ, it is bounded. By Liouville’s theorem f is constant. But
the constant term of f is zero, so f = 0.

Now we can associate to every complex torus C/Λ an elliptic curve E of the form

y2 = 4x3 − g2(Λ)x− g3(Λ),

with g2 = 60G4, g3 = 140G6, and show that C/Λ ∼= E(C).
To get the associated complex lattice Λ from a given elliptic curve E one considers in-

tegrating around the two non-contractible circles of the torus of E(C). This gives the two
periods of Λ such that C/Λ ∼= E(C). The detailed calculations are given in [11] (Chapter 9
Section 6).

Recall the j-function of an elliptic curve given in equation 3.6. One sees that equation
3.10 has the form of equation 3.4 with b2 = 0. Plugging g2/2, g3 in place of b4, b6 in the
j-function formula gives

j(Λ) = 123
g2(Λ)

3

g2(Λ)3 − 27g3(Λ)2
. (3.11)

Finally, two complex lattices Λ and Ω are said to be homothetic if there exists a complex
number λ ∈ C∗ such that Ω = λΛ. Every complex lattice is homothetic to a complex lattice
Λτ := 1Z ⊕ τZ, where τ is a complex number with positive imaginary part. We call τ the
complex period of Λτ .
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Lemma 3.2.7. Two complex tori C/Λτ and C/Λσ are isomorphic if, and only if, Λτ and Λσ

are homothetic.

3.3 Modular Functions

In this section we define modular functions of weight 2k. We show that a rather general class
of modular functions of weight 0 are periodic and therefore have a Fourier series. We then
define the important class of functions called Hauptmoduln. Finally we consider basic theory
of modular forms and integer lattices, allowing us to arrive at a particularly interesting result
relating the j-function and the Leech lattice.

3.3.1 Modular Functions and Congruence Subgroups

In the previous section we showed that two elliptic curves are isomorphic if, and only if,
their corresponding complex tori are analytically isomorphic. We would like to know, given
any two complex numbers in the upper half-plane H, whether or not their respective elliptic
curves are isomorphic. Following lemma 3.2.7, it is enough to show that the homothety of
two complex tori is an equivalence relation on H. However we instead use H∗ := H∪Q∪{∞},
which will be explained shortly.

Proposition 3.3.1. The full modular group SL2(Z) is the set of all invertible integral
valued matrices with determinant one. The Möbius action

• : SL2(Z)×H∗ → H∗ given by([
a b
c d

]
, τ

)
7→ aτ + b

cτ + d

defines an equivalence relation on the upper half-plane H. Furthermore, two complex tori
are homothetic if, and only if, their corresponding complex periods are equivalent with respect
to the Möbius action.

The set of equivalence classes above is written X(1) = XSL2(Z) := H∗/SL2(Z), and is
called a modular curve. It can be seen that the elements of this modular curve are in one-
to-one correspondence with the isomorphism classes of elliptic curves. In other words, the
j-function is constant on the equivalence classes of H∗ as an elliptic function.

The points Q∪{∞} are equivalent under the action of SL2(Z), and so form an element in
the modular curve XSL2(Z). This point is called the point at infinity, and is added to ensure
XSL2(Z) is isomorphic to the 2-sphere; that is, this added point is the ”north pole” in the
stereographic projection of the sphere onto C ∪ {∞}.

Generally a modular curve is the set XΓ := H∗/Γ for some subgroup Γ of SL2(Z), which
can be seen to be locally diffeomorphic to C.
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We now define modular functions on the upper half-plane, which are heavily linked with
the elliptic functions of the previous section.

Definition 3.3.2. Let k ∈ Q and Γ be a discrete subgroup of SL2(Z). A modular form of
level Γ and weight 2k is a holomorphic function f : H∗ → H∗ with finitely many poles such

that for all γ =

[
a b
c d

]
∈ Γ and τ ∈ H we have

f(γ • τ) = (cτ + d)2kf(τ).

The space of all such functions is denoted M2k(Γ).

Example 3.3.3. The elliptic functions G2k in the previous section, known as Eisenstein

series, are modular forms of level SL2(Z) and weight 2k. To see this, let γ =

[
a b
c d

]
∈

Γ, τ ∈ H. Then

G2k(γ • τ) =
∑

(m,n)∈Z2\(0,0)

1

(m+ γ • τn)2k

=
∑

(m,n)∈Z2\(0,0)

(
cτ + d

(bn+ dm) + τ(an+ cm)

)2k

= (cτ + d)2kG2k(τ).

Our main functions of study are a variation of modular forms, called modular functions.
These are modular forms of weight zero without the restriction of being holomorphic; that
is, they are meromorphic and completely invariant under the action of their weight group
Γ. Modular forms are ‘more common’, and we can simply construct modular functions from
quotients of modular forms.

Example 3.3.4. The j-function in equations 3.6 and 3.11 is a modular function of level
SL2(Z). This can be seen by either constructing j from the modular forms G4 and G6,
or by observing that j is constant on the equivalence classes of H∗.

Now we consider some discrete subgroups of SL2(Z).
Definition 3.3.5. The principal congruence subgroup of level n is the subgroup Γ(n) of
SL2(Z) defined by

Γ(n) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1 mod n; c ≡ 0 mod n

}
.

A subgroup of SL2(Z) is called a congruence subgroup if it contains Γ(n) for some n ∈ N.
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Example 3.3.6. The Hecke congruence subgroup of level n given by

Γ0(n) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod n

}
is a congruence subgroup for all n ∈ N.

Remark 3.3.7. If a modular form or function has level Γ0(n) we sometimes write weight n
instead. Note that Γ0(1) = SL2(Z).

3.3.2 Periodic Functions and Laurent Series

We consider subgroups Γ of SL2(Z) which contain T =

(
1 1
0 1

)
such that any modular

function f of level Γ and any weight satisfies f(τ + 1) = f(T · τ) = f(τ) for all τ ∈ H∗. It
can be seen that T ∈ Γ(n), thus T is in any congruence group.

The function f has period 1 and thus may be expanded in a Fourier series

f(τ) =
∞∑
n=0

ane
2πinτ =

∞∑
n=0

anq
n, (3.12)

where an ∈ C. This is called the q-expansion of f . More precisely, any modular function
of level Γ, Γ a congruence subgroup, has a q-expansion.

One can show that G2k has q-expansion

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∑
n≥1

n2k−1qn

1− qn
,

where ζ is the Riemann Zeta function. Plugging the above into equation 3.11 of the j-function
gives

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · (3.13)

following a routine calculation. Notice that these coefficients are closely related to the dimen-
sion of irreducible representations of the Monster group of Chapter 2, subtract the constant
term 744. From now on we write J(τ) := j(τ)− 744 as the J-function.

3.3.3 Hauptmoduln

It can be seen that any modular function of level Γ is naturally a meromorphic function
on the modular curve XΓ, and the set of all such functions form a field. The aim of this
subsection is to show that this field of meromorphic functions M(XΓ) is finitely generated.
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We say Γ has genus zero if XΓ has genus zero topologically; that is, if it is homeomorphic to
the 2-sphere.

Let Γ be a genus zero congruence subgroup. The meromorphic functions f ∈ M(XΓ)
have

f : XΓ → C∞ := C ∪ {∞} ∼= P1.

The next theorem shows that if f has at least one pole, then the meromorphic function
field defined on some modular curve is finitely generated.

Proposition 3.3.8. Let f : XΓ → C∞ be a meromorphic function on some modular curve
XΓ associated to some congruence subgroup Γ, and let pol(f) denote the number of poles of
f . Then

[M(XΓ) : C(f)] ≤ pol(f), (3.14)

where C(f) is the quotient field generated by f .

Proof. This is a specialised form of Proposition 1.17 in [10].

Considering only genus zero modular curves XΓ, we see that XΓ
∼= S2 ∼= C∞, so there

exists a bijection, say JΓ ∈ M(XΓ), such that JΓ(XΓ) = C∞. Since JΓ is a bijection there
is a unique z ∈ XΓ such that JΓ(z) = ∞. Thus JΓ has a unique pole, so we may write the
Laurent series as

JΓ(τ) =
1

q
+

∑
n≥0

anq
n (3.15)

for complex an.

This bijection has a unique pole, so a simple application of Proposition 3.3.8 shows that
M(XΓ) = C(JΓ). Such a function that generates the meromorphic function field of a genus
zero modular curve is called a Hauptmodul.

The j-function in equation 3.13 is a Hauptmodul of SL2(Z) since it is a bijection from
SL2(Z) onto C∞.

3.3.4 Modular Forms and Extremal Lattices

Theorem 3.3.9. The normalised Eisenstein functions E2k := G2k
2ζ(2k) are modular forms.

The complex vector space M2k(SL2(Z)) has basis elements Ea
4E

b
6 for integers a, b ≥ 0 with

4a+ 6b = 2k.
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Recall that the discriminant of an elliptic curve is ∆ =
c34−c26
123

. It can be seen that ∆ is
a modular form of level 1 and weight 12 by substituting G4 and G6 into the above formula
appropriately. However we ‘normalise’ the discriminant to get what is known as the modular
discriminant

∆(τ) =
E3

4(τ)− E2
6(τ)

123

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + · · · .

Most importantly this allows us to write the classical j-function as

j(τ) =
E3

4(τ)

∆(τ)
.

Important modular forms are the theta series defined in terms of some chosen even
unimodular lattice L. They are given as

θL(τ) :=
∑
α∈L

q
⟨α,α⟩

2 =
∑
n∈Z

L2nq
n

where q = e2πiτ and Ln is defined in Proposition 2.1.11.

Proposition 3.3.10. Let L be an even unimodular lattice of rank n. Then θL is a modular
form of level 1 and weight n/2.

Proof. We use the following Jacobi identity, where L is an even lattice:

θL(τ) =

(√
τ

i

)n
2 1

det(L)
θL∗(τ).

The result follows when the identity is applied to an even unimodular lattice. The identity
itself follows from the Poisson Summation Formula.

Example 3.3.11. The Leech lattice Λ has theta function

θΛ(τ) = 1 + 196560q2 + 196773120q3 + 398034000q4 + · · · ,

see Theorem 10.5.1 in [15]. We can write this in a more informative way. We note
that the Eisenstein series E3

4 of weight 12 has the formula

E3
4(τ) = 1 + 720q + 179280q2 + 16954560q3 + 396974160q4 + · · · .

Using Theorem 3.3.9 we see that M12 has basis E3
4 and E2

6 . Thus E3
4 and ∆ form
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another basis for M12. By Proposition 3.3.10 θΛ is a modular form of weight 12, so
we can write this theta series in terms of E3

4 and ∆; that is, θΛ = αE3
4 + β∆ for some

constants α and β. Comparing coefficients we get

θΛ(τ) = E3
4(τ)− 720∆(τ).

Finally, dividing through by ∆ gives the beautiful formula

θΛ(τ)

∆(τ)
= j(τ)− 720 = J(τ) + 24. (3.16)



Chapter 4

The Moonshine Module

This chapter aims to introduce some of the required machinery to understand the construction
of the Moonshine Module. The story begins with Lie algebras, vertex operator algebras, and
partition functions. An important example given in Section 4.2 constructs a vertex operator
algebra from a Lie algebra. We then consider vertex operator algebras constructed from
lattices. Finally the Moonshine Module construction is outlined, and a summary in relation
to the Thompson-McKay Conjecture is given.

4.1 Lie Algebras and Affine Algebras

In this section we define the Lie algebra and its affinisation. We construct the universal,
tensor, and symmetric algebras of a Lie algebra, the former and latter being important in
the construction of lattice vertex operator algebras. We also show that the universal algebra
has a well-defined basis; a fact also known as the Poincaré-Birkhoff-Witt Theorem.

Definition 4.1.1. A Lie algebra over K is a K-algebra l where its algebra product [·, ·] :
l× l → l, here called the Lie bracket, satisfies the following:

• [x, y] = −[y, x];

• [x, [y, z]] = [[x, y], z] + [y, [x, z]],

for any x, y, z ∈ l.

Example 4.1.2. Any vector space V can be made into a Lie algebra by defining [x, y] = 0
for any x, y ∈ V . Such a Lie algebra is said to be abelian.
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Example 4.1.3. An important Lie algebra is the affine Lie algebra. Let g be some finite-
dimensional Lie algebra. The affinisation of g is the centrally extended loop algebra

ĝ = g⊗ C[t, t−1]⊕ CC

where C is a central element (i.e. [x,C] = 0 for all x ∈ ĝ) and the Lie bracket is

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +mδm+n,0C.

This Lie algebra is infinite dimensional.

Definition 4.1.4. Let g be a finite-dimensional Lie algebra. The tensor algebra T (g) of g
is the graded vector space

T (g) :=
⊕
i≥0

T i(g) = K⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · ·

where elements are to have only finitely many non-zero entries. We note that multiplication
in the tensor algebra is the tensor product defined by

(v1 ⊗ ...⊗ vn)⊗ (w1 ⊗ ...⊗ wm) := v1 ⊗ ...⊗ vn ⊗ w1 ⊗ ...⊗ wm

for vi, wj elements in the tensor algebra. Thus the algebraic structure on the tensor algebra
comes from the direct sum and the tensor product.

Consider the ideals of this algebra generated by the sets

Iu = {a⊗ b− b⊗ a− [a, b] | a, b ∈ g}, and

Is = {a⊗ b− b⊗ a | a, b ∈ g}.
The corresponding quotient algebras U(g) := T (g)/⟨Iu⟩ and S(g) := T (g)/⟨Is⟩ are the

universal enveloping and symmetric algebras of g, respectively. It can be seen that U(g) is
a filtered associative algebra, while the symmetric algebra is graded commutative:

S(g) :=
⊕
i≥0

Si(g) = K⊕ g⊕ (g⊙ g)⊕ (g⊙ g⊙ g)⊕ · · ·

where ⊙ is the symmetric tensor product.
In order to work with the enveloping algebra we need to ensure the existence of a basis.

The following well-known theorem states that any given basis of a Lie algebra determines a
basis for its enveloping algebra:

Theorem 4.1.5 (Poincaré-Birkhoff-Witt). Let v1, ..., vn be an ordered basis for a Lie algebra
g. Then {v⊗a1

1 ⊗ · · · ⊗ v⊗an
n | ai ∈ N} is a basis for U(g).

Proof. See [16].



4.2. VERTEX OPERATOR ALGEBRAS 37

4.2 Vertex Operator Algebras

This section gives an introduction to the algebraic structures called vertex operator algebras
(VOA’s); they have relations to both Mathematics and Physics. The first part of this section
introduces the classical partition function, important in Physics. The second part of this
section gives the definition of an important Lie algebra called the Virasoro algebra, and
finally the definition of a VOA. The relation of VOA’s with the partition functions of Physics
is also introduced.

4.2.1 Classical Partition Function

Let H be a Hilbert space with Hermitian form ⟨·|·⟩, where we are using bra-ket notation, and
H the Hamiltonian. The eigenvalues En of H are related by

H|φn⟩ = En|φn⟩

where φn are the eigenvectors of H. We note that these eigenvectors can be normalised
to form an orthonormal basis for H with respect to ⟨·|·⟩. We define the classical partition
function of a system (H, H) by

Z := trHe
−βH ,

where β := (kBT )
−1 is the inverse of temperature T and kB is the Boltzmann constant. We

will show that this form is equivalent to the partition function given in Statistical Mechanics:

Z =
∑
n≥0

(−β)ntrH(H
n)

n!
=

∑
n≥0

(−β)n
∑

k≥1⟨φk|Hn|φk⟩
n!

=
∑
n≥0

(−β)n
∑

k≥1E
n
k ⟨φk|φk⟩

n!
=

∑
k≥1

∑
n≥0

(−β)nEn
k

n!

=
∑
k≥1

e−βEk =
∑
m≥1

d(m)e−βEm .

The last line has d(n) which counts the number of duplicate eigenvalues, while the second
to last line is the familiar partition function. This form has useful applications in physics. For
example, Z can be used to calculate a system’s expected free energy ⟨E⟩ = −∂ lnZ

∂β . Other
values such as the Helmholtz and Gibbs free energy, entropy, and heat capacity can also be
derived from it.



38 CHAPTER 4. THE MOONSHINE MODULE

4.2.2 Virasoro and Vertex Operator Algebras

The Virasoro algebra Vir, with central charge c ∈ C, is the Lie algebra spanned by generators
Ln for n ∈ Z and c, with Lie bracket relations [Lm, c] = 0 and

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m+ 1)(m− 1)δm+n,0.

We can thus write Virc =
⊕

nCLn⊕Cc with a Z-gradation. This algebra occurs naturally
when examining infinitesimal conformal transformations of a surface. Let such a surface be
a complex torus. We can represent this torus with the modular parameter τ in the upper
half-plane, which we have shown classifies complex tori up to modular transformations, which
are themselves conformal transformations. From [17] the partition function of this surface is
given by

ZH(τ) = trH(q
L0−c/24qL0−c/24)

where q = e2πiτ and τ = i β
2π + µ with µ the spin potential. From now on we only consider

holomorphic CFT’s; that is, when the partition function is meromorphic; that is, when
ZH(τ) = trH(q

L0−c/24). Here L0 plays the role of the Hamiltonian.
A vertex operator algebra (VOA) is a quadruple (V, Y,1, ω), where V =

⊕
n∈Z Vn is a

Z-graded linear space and

Y : V → F(V ), v 7→ Y (v, z) =
∑
n

vnz
−n−1,

1, ω ∈ V,

• Y (ω, z) =
∑

n Lnz
−n−2 with a constant c such that

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0IdV ;

• Vn = {v ∈ V | L0v = nv};

• dim Vn < ∞, Vn = 0 for n << 0;

• Y (L−1u, z) = ∂Y (u, z).

Example 4.2.1. We construct the Heisenberg VOA (CFT for one free boson).
Let A = Ca be a 1-dimensional vector space. Perform the affinization

Â = A⊗ C[t, t−1]⊕ CK

as in Example 4.1.3, with central element K and Lie bracket

[a⊗ tm, a⊗ tn] = mδn+m,0K.
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Define Â≥ = ⟨a ⊗ tn | n ≥ 0⟩ and Â− = ⟨a ⊗ tn | n < 0⟩, each of which is an ideal
and subalgebra, respectively. Let h ∈ C, and write Cvh as an Â≥-module with action

(a⊗ tn) · vh = hδn,0vh;

K · vh = vh.

Then
Mh := Ind

U(Â)

U(Â≥)
Cvh ∼= U(Â−)⊗ Cvh

is the induced module which will be our VOA. Writing a ⊗ tn as an ∈ End(Mh), and
a(z) =

∑
n anz

−n−1 for a formal variable z. For h = 0 we have a = a−1v0 and

• Y (a, z) = a(z);

• 1 = v0;

• ω = 1
2a

2
−11;

• c = 1,

which gives M0 a VOA structure.

If v ∈ Vn then we say v has homegeneity n. The idea is to interpret L0 as the energy
operator, then the homogeneity of v ∈ V can be interpreted as its energy level.

Our space of states or Fock space in a VOA is V . Each Vn is an eigenspace of L0 which
must be spanned by some basis, which is how we define dim Vn. When we take the trace of
qL0−c/24 with respect to the basis of V we are of course counting the number of basis elements
for each Vn and ‘pinning’ this number to qn. Hence the partition function of a VOA V takes
the form

ZV (τ) = q−c/24
∑
n∈Z

dim Vnq
n

which provides motivation for the definition of VOA’s; that is, if we can determine a VOA
structure on a Fock space then we can easily determine its partition function. Interesting
VOA’s are those with central charge c a multiple of 24. We can construct such VOA’s using
extremal lattices.

Like in Statistical Mechanics, we call the coefficient of qn the degeneracy (number of
states) at that energy level, which in this case is dim Vn. If the partition function of a VOA
is a modular function; that is, invariant under all elements of the modular group SL2(Z),
then we say the partition function is modular invariant or modular.
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4.3 Lattice VOA’s

This section introduces an important class of VOA’s constructed from lattices, called Lattice
VOA’s; their importance in Monstrous Moonshine is shown in the following section.

Definition 4.3.1. Let L be an even lattice. The lattice VOA V(L) is defined as

V(L) := S(h−Z )⊗ C[L],

where h = L⊗ C. The VOA structure is presented in [12].

We would like to find the partition function of a lattice VOA and determine when it
is modular. Note that the partition function of a tensor product is the product of their
respective partition functions, which can be seen by multiplying out the gradings of the
VOA’s through the tensor product, determining the partition function, and then factorising
back to the required form. We first sate the partition function of S(h−Z ) for an arbitrary
vector space h.

Proposition 4.3.2. Define the eta function η(τ) = q−1/24
∏

n≥1(1−qn) with q = e2πiτ . Then

ZS(h−Z )(τ) =
1

η(τ)dimh
.

Proof. See Section 1.10 in [7].

We state the well-known modular properties of the eta function.

Proposition 4.3.3. The eta function defined above is meromorphic on the upper half-plane.
For all τ ∈ h we have the following:

η(τ + 1) = e
πi
12 η(τ);

η

(
−1

τ

)
=

√
−iτη(τ).

Proof. This is a classical result. An application of the definition of η gives the first identity,
and an application of the Poisson Summation Formula gives the second identity.

Notice that the partition function in Proposition 4.3.2 is not modular. However, using the
modular properties of η given in Proposition 4.3.3 it is easy to see that η(τ)24k is a modular
form of weight 12k for some k ∈ Z>0.
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If we consider C[L] =
∑

n≥0CL2n as a graded vector space, then the corresponding
partition function must be

ZC[L](τ) =
∑
n≥0

L2nq
n = θL(τ).

Hence

ZV(L)(τ) =
θL(τ)

η(τ)rank L

which is modular for rank L = 24k by Proposition 3.3.10.

Example 4.3.4. Let Λ be the Leech lattice. Then from Example 3.3.11 we must have

ZV(Λ)(τ) = J(τ) + 24

where J is the J-function.

4.4 Z2-Orbifold Construction of V ♮

In this section we give an outline of the construction of the Moonshine Module using what
we have covered so far in previous sections. Any details omitted can be found in the book
[7].

The following construction is similar to the construction of the Monster group in Section
2.4.

1. Recall that the Monster group M is the unique simple group satisfying the hypothesis
H(12,Co1). Furthermore, the group 224+ ·Co1 is a maximal subgroup since M was gener-
ated in Section 2.4 by this subgroup along with an involution. For further verification,
see [20] for a near-complete list of the maximal subgroups of M.

2. The Leech lattice Λ has automorphism group Co0 ∼= 2·Co1.

3. Construct the lattice VOA V(Λ) which has discrete automorphism group C ∼= 21+24
+ ·Co1.

Importantly we have ZV(Λ)(τ) = J(τ) + 24, see Example 4.3.4.

4. Let θ = −1 be the central element in Co0. Notably θ can be lifted to an automorphism of
V(Λ), and thus we can form a new VOA by considering the eigenspaces of each gradation
of V(Λ) with respect to the action of θ, in direct sum with a carefully constructed
‘twisted’ section. The resulting VOA is called the Moonshine Module, written V ♮. This
is the Z2-orbifold process; precisely since ⟨θ⟩ ∼= Z2.

5. Construct an automorphism σ /∈ C of V ♮; this process is called triality.

6. Show that ⟨C, σ⟩ ∼= M is the full automorphism group of V ♮ with ZV ♮(τ) = J(τ).
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4.5 Summary

In the previous section we gave an outline of the construction of the Moonshine Module. In
particular, the J-function introduced in Chapter 3 is the partition function and the Monster
group introduced in Chapter 2 is the automorphism group. The Moonshine Module V ♮ is
indeed a vector space which satisfies all conditions of the Thompson-McKay Conjecture 1 in
the Introduction.



Chapter 5

More Moonshine

The 26 sporadic groups can be partitioned into two sets:

1. The Happy Family: The collection of sporadics which can be found as subgroups of the
Monster up to some extension:

• First Generation (The Mathieu groups) M11, M12, M22, M23, and M24;

• Second Generation (The Leech Lattice groups1) Co1, Co2, Co3, Suz, McL, HS,
and HJ ;

• Third Generation M, B, Fi22, Fi23, Fi′24, Th, He, and HN ;

2. The Pariahs: The collection of sporadics which are not in the Happy Family.

• J1, J3, J4, Ru, O′N, and Ly.

As one would expect it is more likely to find moonshine for Happy Family sporadics.

5.1 Happy Family

In this section we look at some results by Larissa Queen relating moonshine to Happy Family
sporadics. We then consider a moonshine theory for groups He, Th, and HJ , which is at
this time conjectural.

5.1.1 The Results of Queen

The Thompson-McKay series’ of the conjugacy classes 2A, 3C, 5A, 7A in the Monster cor-
respond to the sporadic groups B, Th, HN , He. An explanation of the notation for the
conjugacy classes of the Monster can be found in the ATLAS [5].

1Automorphisms of sublattices of the Leech Lattice
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5.1.2 Held, Thompson, and Hall-Janko

The Held sporadic group He is known to satisfy the hypothesis H(3, PSL3(2)). Furthermore,
21+6
+ · PSL3(2) is a maximal subgroup. It may be possible to replicate the construction of

the moonshine module V ♮ for the Held group.
The double cover 2·PSL3(2) has 3 irreducible representations of degree 6 over C. Choosing

an appropriate basis one could construct an even lattice inside such a representation with 2 ·
PSL3(2) as the automorphism group. The associated lattice VOA has discrete automorphism
group 21+6

+ ·PSL3(2). Finally an orbifolding could produce the required VOA to have He as
the automorphism group.

Similarly the Thompson and Hall-Janko sporadic groups Th and J2 satisfy the hypotheses
H(4, A9) and H(2, A5), respectively, and both are maximal subgroups. In the general case,
the constructions probably rely on the Schur cover of the quotient group being perfect, which
is true in these cases. (The perfectness of Co0 is exploited in the construction of the Monster).

It must be noted however that the constructions of the Monster and the Moonshine
Module are delicate, and replicating such constructions for the proposed groups above is
likely not possible. Indeed any lattices constructed above would not be unimodular, so
a VOA constructed from these processes would not have modular partition functions, see
Section 4.3. For an account of the maximal groups above see [20].

5.2 Pariahs

In this section we discuss some recent results on moonshine theories of two Pariah sporadics;
namely the O’Nan group O′N and the Rudvalis group Ru.

5.2.1 O’Nan

The O’Nan group O′N is the 12th largest sporadic and 2nd largest pariah, with group order

|O′N| = 29 · 34 · 5 · 73 · 11 · 19 · 31.

There is a moonshine for this group, proven in [19]. We state the main theorem.

Theorem 5.2.1. There exists a graded O′N-module

W =
⊕

0<m≡0,3 (mod 4)

Wm

and weight 3/2 modular forms F[g] for each [g] ∈ Conj(O′N) such that

F[g](τ) := − 1

q4
+ 2 +

∑
0<m≡0,3 (mod 4)

Trace(g|Wm)q
m
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is a Hauptmodul for the group Γ0(4|g|) < SL2(R).

The proof uses the theory of singular moduli; the study of rational values of the j-invariant.
The paper remarks that at the time of publication W is not given a VOA structure, but
suggests one may exist given that∑

m,n≡0 (mod 2)

Trace(g|Wm)q
m+n2

4 +
∑

m,n≡1 (mod 2)

Trace(g|Wm)q
m+n2

4

is the derivative of the J-function up to a constant.
As an example, for the conjugacy class of the identity e ∈ O′N, the corresponding Haupt-

modul is

F[e](τ) = − 1

q4
+ 2 + 26752q3 + 143376q4 + 8288256q7 + 26124256q8 + · · · ,

with congruence group Γ0(4) and [Γ0(1) : Γ0(4)] = 6.

5.2.2 Rudvalis

The papers [13] and [14] construct a quadruple (ARu, Y,1,ΩRu) as a self-dual enhanced U(1)-
VOA of rank 28, with full automorphism group isomorphic to Z7 ×Ru.
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