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Abstract

In 1982 Freedman showed that compact, oriented, simply-connected topological 4-
manifolds are classified up to homeomorphism by their intersection form on the middle
dimensional cohomology, and a Z2-valued invariant called the Kirby-Siebenmann in-
variant. An open question is which topological 4-manifolds are smoothable? In 1983,
Donaldson gave a partial answer to this question. His result, called Donaldson’s theorem,
states that definite, compact, oriented, simply-connected 4-manifolds are smoothable if,
and only if, their intersection form is diagonalisable.

In this thesis, we review a proof of Donaldson’s theorem using Seiberg-Witten theory,
due to Kronheimer.
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Chapter 1

Introduction

It is known that compact, oriented 2-manifolds are classified up to homeomorphism
and diffeomorphism by a single enumerative invariant called the genus. Similarly,
compact 3-manifolds are classified up homeomorphism and diffeomorphism by Thurston’s
geometrisation conjecture. A natural question is whether higher dimensional manifolds
admit such classifications? In dimensions five and above, techniques pioneered in the
1960’s such as surgery theory provide the required classification. While these techniques
do provide a classification for topological 4-manifolds, they fail for smooth 4-manifolds.

The problem of classifying topological 4-manifolds had a breakthrough in 1982 with
Freedman’s seminal paper [Fre82]. Freedman’s main result stated that compact, oriented,
simply-connected topological 4-manifolds are classified, up to homeomorphism, by their
intersection form and a Z2-valued invariant called the Kirby-Siebenmann invariant.
This was a strengthening of results by Milnor and Whitehead which proved that the
intersection form provides a classification up to homotopy.

Freedman’s result is powerful because it turns a problem in topology into a problem in
arithmetic, with the resulting problem being to classify the intersection forms. But is
this possible? Intersection forms are defined as being either definite or indefinite, with
the indefinite forms having been classified previously by Serre. However, the definite
forms are not classified. It is known that for a given rank, there are only finitely many
equivalent forms; but this number grows rapidly with respect to the rank.

The situation for definite intersection forms of smooth 4-manifolds, however, is very
different.

In Donaldson’s 1983 paper [Don83], published only a year after Freedman’s, Donaldson
was able to use gauge theory to construct novel invariants for certain smooth 4-manifolds.
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2 CHAPTER 1. INTRODUCTION

Explicitly, Donaldson studied the space of anti-self-dual connections, called instantons,
on a principal SU(2)-bundle. These instantons have an action by gauge transformations,
and Donaldson investigated the quotient space of this action. The resulting space is a
moduli space of instantons.

Studying the moduli space of instantons proved fruitful; it encodes a large amount of
information about the differential topology of the 4-manifold. In particular, Donaldson
was able to use this to classify all possible definite intersection forms for compact,
oriented, and simply-connected smooth 4-manifolds; they are diagonalisable. Therefore,
the intractable cases of Freedman’s theorem are removed, and we have a classification
of compact, oriented, and simply-connected smooth 4-manifolds up to homeomorphism.

Donaldson’s theory is not without limitations. One main drawback is the moduli space
is not compact, and so an exorbitant amount of work is needed to find a suitable
compactification.

However, Witten [Wit88] showed that Donaldson’s theory can be realised as N = 2
supersymmetric Yang-Mills theory; a topological quantum field theory. In joint work
with Seiberg, Witten extensively studied this Yang-Mills theory. This led to Witten’s
1994 paper [Wit94], where he showed this Yang-Mills theory had an associated “Seiberg-
Witten” theory which encapsulated many results proved earlier by Donaldson. However,
unlike Donaldson’s theory, the spaces associated to Seiberg-Witten theory are compact,
and easier to work with.

Seiberg-Witten theory turned out be the key unlocking the door to many open problems
concerning smooth 4-manifolds. In the years following [Wit94], papers from mathemati-
cians such as Kronheimer, Mrowka, Taubes, etc, proved many conjectures in geometry
not limited to just classifcation problems. One example of where Seiberg-Witten theory
found use can be seen in the Thom conjecture [KM94].

In this thesis, we review the Seiberg-Witten theory proof of Donaldson’s theorem due
to Kronheimer.

1.1 Outline of Thesis

The following is an outline for the remainder of this thesis:

In Chapter 2 we state the main results concerning the classification of 4-manifolds.

In Chapter 3 we provide an introduction to spin geometry.

In Chapter 4 we define the Seiberg-Witten equations, and study the moduli space of
solutions to said equations.
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In Chapter 5 we prove Donaldson’s theorem.

Finally, Appendix A provides a review of basic results and constructions from differential
geometry.
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Chapter 2

4-Manifolds

2.1 Manifolds

We first briefly recall the definition of a n-manifold. A more formal treatment can be
found in [Lee12].

Definition 2.1.1. Let X be a Hausdorff, second countable topological space. We say
X is a topological n-manifold if for every x ∈ X there is an open neighbourhood U
of x which is homeomorphic to an open subset of Rn, with homeomorphism ϕ. We call
the pair (U,ϕ) a chart, and a collection {(Uα, ϕα)}α∈A of charts which covers X is an
atlas.

From the definition it follows that for two charts (Ui, ϕi) and (Uj , ϕj) in an atlas for X,
the map

ϕi ◦ ϕ−1j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) (2.1.1)

is a homeomorphism of open subsets of Rn.

Notice that a n-manifold X need not be connected. However, if X is not connected
then X is a disjoint union of the connected components. (If it was not disjoint, then
neighbourhoods of the points of intersection would not be locally homeomorphic to Rn.)

In this thesis we also wish to consider smooth 4-manifolds, which we now define. First,
we say that the two charts (Ui, ϕi) and (Uj , ϕj) are smoothly compatible if either
Ui ∩ Uj = ∅, or (2.1.1) is a diffeomorphism of open subsets of Rn. An atlas A for X
where each pair of charts in A are smoothly compatible is called a smooth atlas. A
smooth atlas A is maximal if it is not contained in a larger smooth atlas. Two atlases

5



6 CHAPTER 2. 4-MANIFOLDS

are equivalent if their union is an atlas. Hence, a maximal atlas is the same as an
equivalence class of atlases.

Definition 2.1.2. A smooth structure A on a topological n-manifold X is a maximal
smooth atlas. A smooth n-manifold X is a topological n-manifold with a smooth
structure. If a topological manifold X admits a smooth structure, then we say that X
is smoothable.

From the definition it is natural to ask whether every topological manifold admits a
smooth structure? When n = 1, 2, 3 this turns out to be true. However, when n ≥ 4
there are topological manifolds which are not smoothable; and we will construct such a
manifold when n = 4 using theorems of Freedman and Rokhlin.

We now only consider manifolds which are compact, and oriented as these are the only
manifolds we encounter in this thesis.

It is natural to ask whether we can classify such manifolds, either up to homeomorphism,
or diffeomorphism in the smooth case. In low dimensions, n = 1, 2, 3, this is possible;
and further the topological and smooth classifications coincide. If n = 2, then by
the uniformisation theorem 2-manifolds are classified by their genus g. If n = 3,
then the geometrisation conjecture of Thurston (proved by Perelman) also provides a
classification, albeit it is much less explicit. When n ≥ 5, advance techniques such as
surgery theory provide classifications of smooth n-manifolds.

However, smooth 4-manifolds do not have such nice classifications. (Topologically
4-manifolds are classified by surgery, but it does not work smoothly.)

2.2 Intersection Forms

One of the remarkable results of the 20th century is Freedman’s theorem, which states
that compact, oriented, simply connected topological 4-manifolds are classified by their
intersection form. This turns the problem of classifying manifolds into an arithmetic
problem. In this section we define the intersection form, and state Freedman’s theorem.

A space X is simply-connected if X is path-connected and π1(X) = 1.

Let X be a compact, oriented, simply connected 4-manifold (topological or smooth).
Under these assumptions it follows that X has the following integral cohomology groups:

H0(X;Z) ∼= Z, H1(X;Z) = 0, H2(X;Z) ∼= Zb
2(X), (2.2.1)

where b2(X) is the second Betti number of X. By Poincaré duality

H3(X;Z) = 0, H4(X;Z) ∼= Z, (2.2.2)
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and as X is a 4-manifold, Hn(X;Z) = 0 for all n ≥ 5.

However, we know that cohomology comes equipped with a ring structure given by the
cup product

^ : H i(X;Z)×Hj(X;Z)→ H i+j(X;Z), (2.2.3)

which makes H•(X;Z) a graded-commutative ring; i.e., for x ∈ H i(X;Z) and y ∈
Hj(X;Z) we have

x ^ y = (−1)ijy ^ x. (2.2.4)

Restricting the cup product to H2(X;Z), we have a symmetric map

^ : H2(X;Z)×H2(X;Z)→ H4(X;Z) ∼= Z. (2.2.5)

Using this observation, we have the following definition.

Definition 2.2.1. The intersection form of X is the map

QX : H2(X;Z)×H2(X;Z)→ Z, (2.2.6)

given by the composition of the cup product, followed by the standard isomorphism of
H4(X;Z) ∼= Z. If there is no risk of confusion, we drop the dependence on X and write
Q for the intersection form.

Explicitly, we have

QX(x, y) = 〈x ^ y, [X]〉 =

∫
X

(x ^ y), (2.2.7)

where [X] is the fundamental class of X, i.e. the generator of H4(X;Z).

The intersection form is a well-studied object in differential topology, and is the main
object of consideration in the theorems of Freedman and Donaldson.

It is known that, up to torsion elements, the intersection form is a non-degenerate,
unimodular, symmetric bilinear form on H2(X;Z). As X is simply connected, H2(X;Z)
has no torsion, and so the intersection form of X has these properties. (A proof of these
statements can be found in [Sco05, Chapter 3].)

These properties imply that QX can be viewed as a b2(X)× b2(X) symmetric matrix
with integer entries and determinant ±1.

Remark 1. The intersection form has a geometric interpretation which provides an
insight to its name. By Poincaré duality, a class x ∈ H2(X;Z) corresponds to a cycle
in α ∈ H2(X;Z); and as X has dimension less than 6, a theorem of Thom states α
corresponds to an embedded surface Sα in X. So suppose we have α, β ∈ H2(X;Z).
These correspond to embedded surfaces Sα, Sβ in X which, without a loss generality,
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intersect transversely. It turns out that Q(α, β) is precisely the intersection number of
Sα and Sβ. A more detailed explanation can be found in [Sco05, Moo01] �

We now recall properties of the intersection form which will be used extensively.

Theorem 2.2.2. Suppose that X and Y are two compact, oriented, simply-connected
4-manifolds with intersection forms QX and QY , respectively. Then

(I) If X is the manifold X with the reverse orientation, then the intersection form of
X is −QX . i.e. changing orientation changes the sign of the intersection form.

(II) The connected sum X#Y has the intersection form QX ⊕QY .

(III) If f : X → X is a orientation preserving homeomorphism, then f∗QX = QX . i.e.
for all x, y ∈ H2(X;Z) we have QX(f∗x, f∗y)X = QX(x, y).

We now define invariants of the intersection form itself.

Definition 2.2.3.

1. The rank of the intersection form Q is defined as

rkQ := dimZ
(
H2(X;Z)

)
, (2.2.8)

i.e. rkQ = b2(X), by non-degeneracy.

2. We say that Q is even if for all x ∈ H2(X;Z) we have Q(x, x) ∈ 2Z. Otherwise,
Q is odd.

3. Q is positive-definite if Q(x, x) > 0 for all non-zero x ∈ H2(X;Z). If Q(y, y) < 0
for all non-zero y ∈ H2(X;Z), then Q is negative-definite. If Q is neither
positive-definite nor negative-definite, it is indefinite.

Consider the change of coefficients

H2(X;R) = H2(X;Z)⊗Z R ∼= Rb
2(X). (2.2.9)

Then there exists a basis such that

Q =



1
. . .

1
−1

. . .

−1


. (2.2.10)



2.3. THEOREMS OF FREEDMAN AND DONALDSON 9

We set b2+(X) to be the number of +1 entries, and b2−(X) to be the number of −1 entries;
and these numbers do not depend on the choice of basis. We define the signature of
Q to be the integer b2+(X)− b2−(X).

We define the signature of X to be the signature of its intersection form QX , i.e.

τ(X) = b2+(X)− b2−(X). (2.2.11)

From the definition we can see that the signature is the dimension of the maximal
positive-definite subspace of Q minus the dimension of the maximal negative-definite
subspace of Q.

Remark 2. There is another possible way to define the signature if X is a smooth
manifold. SupposeX is smooth and let g be a Riemannian metric forX. The Riemannian
metric allows us to define the Hodge star operator ? on Ω•(X). It then follows that
b2+(X) is the dimension of the space of self-dual 2-forms, and b2−(X) is the dimension of
the space of anti-self dual 2-forms. We then define the signature of X to be

τ(X) = b2+(X)− b2−(X). (2.2.12)

We recall some basic facts about Hodge Theory in Appendix A �

2.3 Theorems of Freedman and Donaldson

One reason why the intersection form is important in differential topology is that it was
shown by Milnor and Whitehead that the intersection form is a homotopy invariant
[Mil58, Whi49]. So it is natural to ask whether the intersection form is actually a
stronger invariant? A result of M. Freedman shows that this is indeed the case. However,
before we state Freedman’s theorem, we need one more definition.

Definition 2.3.1. The Kirby-Siebenmann invariant of X is the class κ(X) ∈
H4(X;Z2) such that

κ(X) =

{
0 if X is smoothable,

1 if X is not smoothable.
(2.3.1)

Remark 3. Strictly speaking the Kirby-Siebenmann invariant vanishes if, and only if,
X admits a piece-wise linear structure. This distinction is not necessary for us, as in
dimension 4 the category of smooth and piece-wise linear manifolds are equivalent, see
[Mil11]. �
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We are now ready to state Freedman’s theorem.

Theorem 2.3.2 (Freedman, [Fre82]). Compact, oriented, simply connected topological 4-
manifolds are in bijective correspondence with pairs (Q, κ), where Q is a non-degenerate,
symmetric, unimodular, bilinear form. With the condition that if Q is even, then

τ(Q)

8
= κ (mod 2).

Thus if given a symmetric, non-degenerate, bilinear, and unimodular form Q there is
a 4-manifold such that its intersection form is Q. Now if Q is even, there is a unique
such manifold; and if Q is odd there are two possible manifolds, one smooth, and one
topological.

We now present some examples of intersection forms and the manifolds they correspond
to.

Example 2.3.3. As H2(S4;Z) = 0, it follows that the zero form (0) is the intersection
of the 4-sphere S4. J

Example 2.3.4. The definite form (1) is odd, and is realised by the manifold CP 2.

Hence by Theorem 2.2.2 it follows that (−1) is realised by CP 2
(CP 2 with the opposite

orientation); and the form

diag(

`︷ ︸︸ ︷
1, . . . , 1,

m︷ ︸︸ ︷
−1, . . . ,−1) (2.3.2)

with `,m ≥ 0 is realised by the manifold #`CP 2#mCP 2
. J

Example 2.3.5. The form

H =

[
0 1
1 0

]
(2.3.3)

is indefinite, even, and is realised by the manifold S2 × S2. J

Example 2.3.6. The intersection form given by the Cartan matrix of E8

E8 =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 0 −1
−1 2 −1 0

0 −1 2 0
−1 0 0 2


(2.3.4)
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is definite, even, and is realised by the topological E8-manifold, ME8 . J

Remark 4. The emphasis that E8 gives rise to a topological manifold in Example 2.3.6
is important; as ME8 is not smoothable by Rokhlin’s theorem, Theorem 3.5.9, and
Proposition 5.1.3. �

Freedman’s theorem is remarkable because if we have a classification of forms then we
have a corresponding classification of topological 4-manifolds. Therefore, Theorem 2.3.2
turns the classification of topological 4-manifolds from a problem in geometry to a
problem in arithmetic.

So does such a classification of forms exist? This is where the distinction between
definite and indefinite forms is important. If the form is indefinite, then we have such a
classification.

Theorem 2.3.7 (Serre, [Ser73]). Indefinite, symmetric, unimodular, bilinear forms are
classified by their rank, signature, and parity. Explicitly:

(I) If the form is odd, then it is diagonalisable. i.e.

Q = ⊕`(1)⊕m (−1) = diag(1, . . . , 1,−1, . . . ,−1). (2.3.5)

(II) If the form is even, then
Q = ⊕`H ⊕m E8. (2.3.6)

There is no such classification of definite forms, but for a given rank, there are finitely
many distinct isomorphism classes. However, the number grows rapidly with respect to
the rank. For example, there are over 107 distinct even negative-definite forms of rank
32, and over 1051 distinct even negative-definite forms of rank 40.

The situation is very different for smooth 4-manifolds due to following theorem of
Donaldson.

Theorem 2.3.8 (Donaldson, [Don83]). Let X be a compact, oriented, simply-connected
smooth 4-manifold with negative definite intersection form

(
H2(X,Z), Q

)
. Then Q is

Z-diagonalisable, i.e. Q = −I = diag(−1,−1, . . . ,−1).

Hence by combining Theorem 2.3.2, Theorem 2.3.7, and Theorem 2.3.8 we have a
classification of compact, oriented, simply-connected smooth 4-manifolds up to homeo-
morphism.
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Chapter 3

Spin Geometry

In this chapter we give an introduction to spin geometry. However, we only present
enough material that is required for our needs, focusing only on the case when n = 4.
We refer to [LM89, Fri00] for a more general approach.

We follow the exposition presented in [Moo01].

3.1 The Spin and Spinc Groups

We can identity R4 with the quaternions H, which have a representation as complex
2× 2 matrices. Hence we have the map

κ : R4 → EndC(C2), (3.1.1)

defined by

κ(x) =

[
a+ bi c+ di
−c+ di a− bi

]
=

[
α β

−β α

]
(3.1.2)

where x = (a, b, c, d) ∈ R4. As detκ(x) = 0 if, and only if, x = 0; κ is injective. Hence,
if V = imκ then κ : R4 → V is an isomorphism. The subspace V is generated by the
matrices

κ(e1) =

[
1 0
0 1

]
, κ(e2) =

[
i 0
0 −i

]
, κ(e3) =

[
0 1
−1 0

]
, κ(e4) =

[
0 i
i 0

]
, (3.1.3)

where e1, e2, e3, e4 is the standard basis of R4. Note that for x ∈ R4,

detκ(x) = a2 + b2 + c2 + d2 = |x|2 = 〈x, x〉 , (3.1.4)

13
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where 〈 , 〉 is the standard inner product on R4. Thus, it follows that the unit sphere
S3 in R4 can be identified with the special unitary group SU(2).

Definition 3.1.1. The 4-dimensional spin group is the direct product of two copies
of SU(2), i.e.

Spin(4) = SU+(2)× SU−(2) =

{[
A+ 0
0 A−

]
| A± ∈ SU±(2)

}
. (3.1.5)

An element in Spin(4) is denoted by (A+, A−), where A± ∈ SU±(2).

We have a (real) representation of the Spin(4) group

ρ : Spin(4)→ GL(V ),

ρ(A+, A−)(κ(x)) = A−κ(x)(A+)−1.
(3.1.6)

As both A+ and A− have determinant 1,〈
A−κ(x)(A+)−1, A−κ(x)(A+)−1

〉
= det(A−κ(x)(A+)−1) = detκ(x) = 〈x, x〉 . (3.1.7)

Thus the representation preserves the inner product, and so ρ maps into SO(4) ⊂ GL(V ).
We show that ρ actually surjects onto SO(4), and this is done by examining the action
of ρ.

Consider the element

A =

[
eiθ 0
0 e−iθ

]
∈ SU(2). (3.1.8)

Then

ρ(A, I)

[
a+ bi c+ di
−c+ di a− bi

]
=

[
a+ bi c+ di
−c+ di a− bi

] [
eiθ 0
0 e−iθ

]
=

[
eiθ(a+ bi) e−iθ(c+ di)
eiθ(−c+ di) e−iθ(a− bi)

] (3.1.9)

Therefore ρ(A, I) rotates the (a, b) and (c, d) planes by the same angle in the opposite
directions. Similarly

ρ(I, A)

[
a+ bi c+ di
−c+ di a− bi

]
=

[
eiθ 0
0 e−iθ

] [
a+ bi c+ di
−c+ di a− bi

]
=

[
eiθ(a+ bi) eiθ(c+ di)

e−iθ(−c+ di) e−iθ(a− bi)

]
,

(3.1.10)

and so ρ(I, A) rotates the (a, b) and (c, d) planes by the same angle in the same direction.
Note that every element A in SU(2) is conjugate to a matrix of the form (3.1.8). Hence
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for a given orthonormal basis (e1, e2, e3, e4) for V , ρ(A, I) rotates the plane e1 ∧ e2 and
e3 ∧ e4 in the opposite direction, while ρ(I, A) rotates e1 ∧ e2 and e3 ∧ e4 in the same
direction.

By the Cartan-Dieudonné theorem, SO(4) is generated by the rotations constructed
above, so SO(4) ⊂ im ρ and ρ is surjective. Moreover, as both Spin(4) and SO(4) are
Lie groups of dimension 6, ρ induces an isomorphism their respective Lie algebras. Thus
ker ρ is a finite subgroup, and ρ is a covering map. Further, as SU(2) is homeomorphic
to S3, it follows that Spin(4) is simply connected and is a universal cover of SO(4).

As ρ is a universal cover of SO(4), there is a long exact sequence of homotopy groups
which includes the sequence

1 π1(SO(4), I) ker ρ 1, (3.1.11)

and so ker ρ ∼= π1(SO(4), I) ∼= Z2. Explicity, we have ker ρ = {(I, I), (−I,−I)}. One of
the more important aspects of Spin(4) is that it sits inside a Lie group of dimension 7
called the Spinc(4) group.

Definition 3.1.2. The Spinc(4) group is defined as

Spinc(4) =

{[
λA+ 0

0 λA−

]
| A± ∈ SU±(2), λ ∈ U(1)

}
. (3.1.12)

We denote an element of Spinc(4) by [A+, A−, λ].

The representation ρ extends to a representation

ρ : Spinc(4)→ GL(V ), (3.1.13)

defined by

ρc
[
λA+ 0

0 λA−

]
κ(x) = (λA−)κ(x)(λA+)−1. (3.1.14)

There also exists a group homomorphism π : Spinc(4)→ U(1) given by

π

[
λA+ 0

0 λA−

]
= det(λA+) = det(λA−) = λ2. (3.1.15)

Thus the Spin and Spinc groups fit into the exact sequences

1 Z2 Spin(4) SO(4) 1,

1 Z2 Spinc(4) SO(4)×U(1) 1,

ρ

ρc×π
(3.1.16)
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and as a corollary we have the Lie algebras of the Spin and Spinc groups are given
by spin(n) = so(4), and spinc(4) = so(4) ⊕ u(1). These facts will be important when
defining Spin and Spinc connections.

Let W+ and W− be two copies of C2, each with the standard Hermitian metric repre-
senting SU±(2). Then Spin(4) descends to an action on W± by

ρ±

[
A+ 0
0 A−

]
w± = A±w±. (3.1.17)

Similarly, Spinc(4) acts on W± by

ρc±

[
λA+ 0

0 λA−

]
w± = λA±w±. (3.1.18)

The representations ρc+ and ρc− are called the positive and negative spinor repre-
sentations associated to the representation ρc.

It is easy to see that the actions ρc± and ρ± preserve the standard Hermitian metrics
on W+ and W− (this follows from A± being unitary and λ ∈ U(1)). Hence, there is an
isomorphism

V ⊗ C ∼= HomC(W+,W−). (3.1.19)

Since unit length vectors in R4 are represented by unitary matrices in V , they acts as
isometries from W+ to W−.

3.2 Spin and Spinc Structures

Let X be a 4-dimensional orientable Riemannian manifold with Riemannian metric g.
We wish to define a Spinc-structure on X, which is a principal Spinc-bundle on X.

Let Fr(X) denote the frame bundle of X. It follows that Fr(X) is a principal GL(4,R)-
bundle, and via the Riemannian metric we can reduce the structure group to O(4).
Further, as X is orientable, the structure group can be reduced to SO(4). Thus, by the
previous section it could be possible to lift the frame bundle to a principal Spinc(4) (or
Spin(4)) bundle.

Definition 3.2.1. A Spinc-structure on an oriented Riemannian manifold X is a lift
of the frame bundle Fr(X) to a principal Spinc(4)-bundle P → X. A Spin-structure
on X is a lift of the frame bundle to a Spin(4)-bundle.
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Thus P is Spinc-structure on X if the following diagram commutes:

P × Spinc(4) P

Fr(X)× SO(4) Fr(X)

X

(3.2.1)

It is clear that every Spin-structure determines a Spinc-structure under the inclusion
Spin(4) ↪→ Spinc(4).

Let S(X) denote the space of all Spinc-structures on X. Using to the map π : Spinc(4)→
U(1) defined in (3.1.15), we can associate to a Spinc-structure a principal U(1)-bundle
L2. This line bundle is called the determinant line bundle. (The notation of L2 for
the determinant line bundle will be explained later in the section.)

We now look at the construction of a Spinc-structure locally. Given that X is an oriented
Riemannian manifold, there is a reduction of the structure group from GL(4,R) to
SO(4). This implies there exists a trivialisation of the tangent bundle TX with an open
cover {Uα}α∈A of X and transition functions

gαβ : Uα ∩ Uβ → SO(n), (3.2.2)

satisfying the cocycle condition:

gαβgβγgγα = 1. (3.2.3)

A Spinc-structure is therefore a collection of maps

g̃αβ : Uα ∩ Uβ → Spinc(4) (3.2.4)

which satisfy the cocycle condition, and ρc ◦ g̃αβ = gαβ. Similarly, a Spin-structure
is a collection of maps g̃αβ which map into the Spin(4) group and satisfy the cocycle
condition.

A natural question is whether every oriented Riemannian manifold X admits either a
Spin or Spinc-structure? Looking at the local description, by the work done in section 3.1
it is possible to lift the transition functions for the frame bundle gαβ : Uα ∩Uβ → SO(4)
to maps g̃αβ : Uα ∩ Uβ → Spinc(4). However, a priori the lifts g̃αβ do not satisfy the
cocycle condition; and hence may not define a Spinc-structure on X. The obstruction
to the lifts to satisfying the cocycle condition is entirely topological, and is described by
the vanishing of the second Stiefel-Whitney class w2(TX) ∈ H2(X;Z2).
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Definition 3.2.2. An open covering {Uα}α∈A of X is a good cover if for every choice
(α1, . . . , αn) the intersection

Uα1 ∩ · · · ∩ Uαn (3.2.5)

is empty or diffeomorphic to R4.

Every manifold admits a good cover, for a proof see [BT82, p. 42]. Further, the short
exact sequence (3.1.16) of coefficient groups induces a long exact sequence in Čech
cohomology which contains

· · · Ȟ1(X,Spin(4)) Ȟ1(X,SO(4)) Ȟ2(X,Z2) · · · .
(3.2.6)

Theorem 3.2.3. Let X be an oriented Riemannian manifold. Then

(I) X admits a Spin-structure if, and only if, w2(TX) = 0.

(II) X admits a Spinc-structure if, and only if, the second Stiefel-Whitney class w2(TX)
is the reduction mod 2 of an integral class, i.e. w2(TX) = c (mod 2) for some
c ∈ H2(X;Z).

Proof. (I): Let {Uα}α∈A be a good cover of X, which trivialises TX. As Uα ∩ Uβ is
contractible, each transition function

Ȟ1(X,SO(n)) 3 gαβ : Uα ∩ Uβ → SO(4), (3.2.7)

can be lifted to functions

Ȟ1(X,Spin(4)) 3 g̃αβ : Uα ∩ Uβ → Spin(4). (3.2.8)

However, these lifts may not satisfy the cocycle condition. Define

ηαβγ = g̃αβ g̃βγ g̃γα : Uα ∩ Uβ ∩ Uγ → Spin(4). (3.2.9)

Then ρ(ηαβγ) = 1, so ηαβγ ∈ ker ρ = Z2, which implies ηαβγ ∈ Ȟ2(X,Z2). By exactness
of (3.2.6), for the gαβ to lift to transition functions g̃αβ, we require ηαβγ = 1. Let δ
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denote the Čech differential. Then, as Z2 is abelian,

(δη)αβγε = ηβγεη
−1
αγεηαβεη

−1
αβγ

= ηβγεηαβεη
−1
αγεη

−1
αβγ

= g̃βγ g̃γεg̃εβ g̃αβ g̃βεg̃εα(g̃αγ g̃γεg̃εα)−1(g̃αβ g̃βγ g̃γα)−1

= g̃βγ g̃γεg̃εβ g̃αβ g̃βεg̃εα(g̃αεg̃εγ g̃γα)(g̃αγ g̃γβ g̃βα)

= g̃βγ g̃γεg̃εβ g̃αβ g̃βεg̃εγ g̃γβ g̃βα

= g̃βγ g̃γεg̃εβ g̃αβηβεγ g̃αβ

= ηβεγ g̃βγ g̃γεg̃εβ

= ηβεγη
−1
βεγ

= 1,

(3.2.10)

which shows that ηαβγ is a Čech cocycle. Since the cover {Uα}α∈A is good, ηαβγ defines
a class in H2(X;Z2). The cohomology class is precisely the second Stiefel-Whitney class
w2(TX).

If X has a Spin-structure, then we can choose gαβ’s that satisfy the cocycle condition.
Hence all the ηαβγ are trivial and so w2(TX) = 0. Conversely, suppose w2(TX) = 0.
Then ηαβγ is a coboundary, i.e. there exists maps

ηαβ : Uα ∩ Uβ → Z2 (3.2.11)

such that
(δη)αβγ = ηαβηβγηγα = ηαβγ . (3.2.12)

We show that {ηαβ g̃αβ} satisfy the cocycle condition, and hence defines a Spin-structure
on X. Indeed, a quick calculation gives

(ηαβ g̃αβ)(ηβγ g̃βγ)(ηγαg̃γα) = ηαβγ g̃αβ g̃βγ g̃γα = η2αβγ = 1, (3.2.13)

as ηαβγ ∈ Z2.

(II): In the case of Spinc-structures, we are interested in lifts of the functions gαβ to
g̃αβ which map into Spinc(4) and satisfy the cocycle condition. By the working in (I),
for a good cover we can always find a lift, but it may not satisfy the cocycle condition.
Assume that w2(TX) = c (mod 2) for some c ∈ H2(X;Z), and let ηαβγ be the Čech
cocycle representing w2(TX). There is a lift of ηαβγ to

η̃αβγ : Uα ∩ Uβ ∩ Uγ → Z (3.2.14)

such that
exp(iπη̃αβγ) = ηαβγ , (3.2.15)
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and the cocycle condition is now

η̃βγε − η̃αγε + η̃αβε − η̃αβγ = 0, (3.2.16)

which can be seen by exponentiating (3.2.12). Suppose that {ψα}α∈A is a partition of
unity subordinate to the good cover {Uα}α∈A. Define

fβγ : Uβ ∩ Uγ → R, (3.2.17)

by

fβγ =
∑
α∈A

ψαη̃αβγ . (3.2.18)

Then it follows that

fαβ + fβγ + fγα =
∑
ε∈A

ψεη̃εαβ +
∑
ε∈A

ψεη̃εβγ +
∑
ε∈A

ψεη̃εγα

=
∑
ε∈A

ψε(η̃εαβ + η̃εβγ + η̃εγα)

=
∑
ε∈A

ψεη̃αβγ = η̃αβγ .

(3.2.19)

Set
hαβ = exp(πifαβ) : Uα ∩ Uβ → U(1), (3.2.20)

then it follows that

hαβhβγhγα = exp
(
iπ(fαβ + fβγ + fγα)

)
= exp(iπη̃αβγ) = ηαβγ . (3.2.21)

Thus, the maps
hαβ g̃αβ : Uα ∩ Uβ → Spinc(4) (3.2.22)

satisfy the cocycle condition, and therefore defines a Spinc-structure on X.

Conversely, we have a geometric formulation of a Spinc-structure as a complex line
bundle L over X such that TX ⊕ L has a Spin-structure. So suppose X has a Spinc-
structure given by a line bundle L, such that TX ⊕ L is spin. Then by part (I) and the
Whitney product formula,

0 = w2(TX ⊕ L) = w2(TX) + w1(TX)w1(L) + w2(L). (3.2.23)

As both TX and L are orientable, w1(TX)w1(L) = 0 which implies w2(TX)+w2(L) = 0.
As these are both Z2 classes, w2(TX) = w2(L). As w2(L) has an integral lift given by
the first Chern class c1(L), it follows that

w2(TX) = c1(L) (mod 2). (3.2.24)
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Remark 5. As X is Spin if, and only if, w2(TX) = 0; we can view the existence of
Spin-structures as the obstruction of ‘higher orientations’ of X. �

From Theorem 3.2.3 is clear that not every 4-manifold admits a Spin-structure. For
example, CP 2 has non-trivial second Stiefel-Whitney class and thus is not Spin. However,
a result of Hirzebruch and Hopf in [HH58], shows that every compact, oriented 4-manifold
has a Spinc-structure.

Theorem 3.2.4. Every compact, oriented 4-manifold X admits a Spinc-structure.

Proof. We only prove the case when X is simply-connected, as this is the only case
needed for Donaldson’s theorem. Consider the short exact sequence of groups:

1 Z Z Z2 1,
ϕ

(3.2.25)

where the first arrow is multiplication by 2, and ϕ is reduction mod 2. This induces a
long exact sequence in cohomology which includes

· · · H2(X;Z) H2(X;Z) H2(X;Z2) H3(X;Z) · · · ,ϕ∗ β

(3.2.26)
where β is the associated Bockstein, or connecting homomorphism. We show that
w2(TX) ∈ im(ϕ∗) ⊂ H2(X;Z2), so that Theorem 3.2.3 implies X has a Spinc-structure.
By exactness of (3.2.26), im(ϕ∗) = ker(β). However, X is simply-connected, and so
H1(X;Z) = 0. As X is compact, Poincaré duality then implies H3(X;Z) = 0. Hence
im(ϕ∗) = ker(β) = H2(X;Z2), and w2(TX) ∈ im(ϕ∗) as required.

Remark 6. A stronger result has been proved in [TV94], which shows that all 4-
manifolds admit Spinc-structures. �

We now explain the local construction of making a Spin manifold Spinc. Suppose that
X is a Spin manifold, and so there is a collection of transition functions

g̃αβ : Uα ∩ Uβ → Spin(4). (3.2.27)

Let L be a complex line bundle over X with a Hermitian metric. Then the transition
functions for L are given by

hαβ : Uα ∩ Uβ → U(1). (3.2.28)

We form the Spinc-structure on X by taking the transition functions

hαβ g̃αβ : Uα ∩ Uβ → Spinc(4). (3.2.29)
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Now suppose that X is a manifold with a Spinc-structure. Through the map π :
Spinc(4)→ U(1) we can form the complex line bundle with transition functions

π ◦ g̃αβ : Uα ∩ Uβ → U(1). (3.2.30)

This line bundle is precisely the determinant line bundle defined previously. The notation
of L2 for the determinant line bundle now makes sense, it is the square of line bundle
used to construct a Spinc-structure on a Spin manifold.

Let L2 be the determinant line bundle of a Spinc-structure P on X. Recall that we
have the parametrisation of H2(X;Z) by complex line bundles over X. We define a
group action on the space of Spinc-structures on X by H2(X;Z) as follows. Let g̃αβ be
the transition functions for the Spinc-structure, and hαβ the transition functions for a
complex line bundle E over X. We form the new Spinc-structure over X given by the
transition functions hαβ g̃αβ which is equivalent to P ⊗ E. Taking the determinant line
bundle of P ⊗ E we see that L2 is twisted by the cocycle h2αβ, which is the bundle

L2 ⊗ E2. (3.2.31)

Taking the first Chern class of this bundle, we get

c1(L
2 ⊗ E2) = c1(L

2) + 2c1(E). (3.2.32)

This shows that if H2(X,Z) is torsion-free, then Spinc-structures are parametrised by
H2(X;Z). Equivalently, we say that the space of Spinc-structures on X is a H2(X,Z)-
torsor.

Recall that for the Spinc(4) group we had the representations ρc± onto the complex
vector spaces W± ∼= C2. Using these representations, we form two complex vector
bundles with the transition functions

ρc± ◦ g̃αβ : Uα ∩ Uβ → U(2). (3.2.33)

Definition 3.2.5. Let X be a 4-manifold with a Spinc-structure.

(i) The bundle associated to the the transition functions ρc+ ◦ g̃αβ is denoted by S+

and is called the complex positive spinor bundle.

(ii) The bundle associated to the the transition functions ρc− ◦ g̃αβ is denoted by S−

and is called the complex negative spinor bundle.

(iii) The complex spinor bundle S is the direct sum S = S+ ⊕ S−.

Sections ψ ∈ Γ(S+) are referred to as positive spinors, while sections ψ ∈ Γ(S−) are
negative spinors.
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Note that both S+ and S− are equipped with Hermitian metrics. Similar to the case in
section 3.1, we see that there is an isomorphism

TX ⊗ C ∼= Hom(S+, S−). (3.2.34)

3.3 Clifford Multiplication

In this section X is a Riemannian 4-manifold with Riemannian metric g, and X has a
Spinc-structure. Let S be the corresponding spinor bundle.

Definition 3.3.1. Clifford multiplication is a linear map

γ : TX ⊗ C→ EndC(S), (3.3.1)

such that for all v ∈ TX ⊗ C :

(i) γ(v) maps S± to S∓.

(ii) γ(v)2 := γ(v)γ(v) = −|v|2 Id.

(iii) γ(v)∗ = −γ(v̄).

The goal of this section is prove the existence of the map γ. This is done in a standard
way: First we construct the map locally on a vector space, then globalise via an
associated bundle construction.

Recall the representation defined in Section 3.1

κ : R4 ⊗ C→ HomC(W+,W−), (3.3.2)

where W± are two copies of C2 with the standard Hermitian inner product. By
considering the adjoint of κ(x), we have a map

− κ(x)∗ = −κ(x)
T ∈ HomC(W−,W+). (3.3.3)

Let W = W+ ⊕W− and define

γ : R4 ⊗ C→ EndC(W ), (3.3.4)

by

γ(x) =

[
0 −κ(x)

T

κ(x) 0

]
. (3.3.5)
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It is clear that γ maps W± to W∓, and by the properties of block matrices γ is also
linear. Note

γ(x)2 =

[
0 −κ(x)

T

κ(x) 0

][
0 −κ(x)

T

κ(x) 0

]

=

[
−κ(x)

T
κ(x) 0

0 −κ(x)κ(x)
T

]
=
(
− detκ(x)

)
I

= −|x|2I.

(3.3.6)

We now investigate the action of γ on the standard basis of R4. If e1, e2, e3, e4 is
the standard basis of R4, then the corresponding matrices κ(ei) were given in (3.1.3).
Therefore, the corresponding γ matrices are

γ(e1) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , γ(e2) =


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

 ,

γ(e3) =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , γ(e4) =


0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0


(3.3.7)

It is easy to see that the matrices γ(ei) are skew-Hermitian, and satisfy the following
property:

γ(ei)γ(ej) + γ(ej)γ(ei) = δijI, (3.3.8)

known as the Clifford relation. Therefore, this leads to the following definition.

Definition 3.3.2. EndC(W ) is called the complexified Clifford algebra of (R4, 〈 , 〉).
From now on, we denote Cl(R4) = EndC(W ).

In fact, it is possible to define the map γ via the matrices γ(ei), as we now show. Let
x ∈ R4 ⊗ C, then x =

∑4
i=1 x

iei for xi ∈ C. An alternate definition for γ is given by
extending linearly:

γ(x) =
4∑
i=1

xiγ(ei). (3.3.9)

From this it easy to prove that the map γ constructed satisfies the requirements stated
in Definition 3.3.1.

Proposition 3.3.3. The map γ : R4 ⊗ C→ Cl(R4) satisfies the following.
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(I) γ(v)γ(w) + γ(w)γ(v) = −2 〈v, w〉 I, for all v, w ∈ R4 ⊗ C.

(II) γ(v)∗ = −γ(v̄), for all v ∈ R4 ⊗ C.

Proof. (I): Suppose v =
∑4

i=1 v
iei and w =

∑4
j=1w

jej are two elements of R4 ⊗ C.
Then

γ(v)γ(w) =
( 4∑
i=1

viγ(ei)
)( 4∑

j=1

wjγ(ej)
)

=
4∑
i=1

4∑
j=1

viwjγ(ei)γ(ej)

= −
4∑
i=1

viwi I = −〈v, w〉 I

(3.3.10)

A similar calculation gives γ(w)γ(v) = −〈w, v〉 I = −〈v, w〉 I, which implies

γ(v)γ(w) + γ(w)γ(v) = −2 〈v, w〉 I. (3.3.11)

(II): If v =
∑4

i=1 v
iei, then v̄ =

∑4
i=1 v̄

iei, and

γ(v)∗ =
( 4∑
i=1

viγ(ei)
)∗

=
4∑
i=1

(
viγ(ei)

)∗
=

4∑
i=1

(
viγ(ei)

)T
=

4∑
i=1

v̄iγ(ei)
T

= −
4∑
i=1

v̄iγ(ei) = −γ(v̄).

(3.3.12)

Corollary 3.3.3.1. If |v| = 1, then γ(v) is a unitary transformation.

We now investigate the algebraic structure of the complexified Clifford algebra. It
follows that Cl(R4) has a basis given by

I, γ(ei), γ(ei)γ(ej) for i < j, γ(ei)γ(ej)γ(ek) for i < j < k,

γ(e1)γ(e2)γ(e3)γ(e4)
(3.3.13)

Now, it follows from (3.3.8) that if i 6= j, then

γ(ei)γ(ej) = −γ(ej)γ(ei). (3.3.14)
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Therefore we can view
∧2(R4 ⊗C) as the complex subspace of Cl(R4) generated by the

products γ(ei)γ(ej). More generally, (3.3.13) gives an isomorphism

Cl(R4) =
4⊕
i=0

∧i
(R4 ⊗ C), (3.3.15)

as vector spaces. Hence the complexified Clifford algebra can be viewed as the complex-
ified exterior algebra, just with a different product.

Now, just like the situation in Hodge theory, the inner product
∧2(R4 ⊗ C) has a

decomposition into self-dual and anti-self-dual parts,

∧2
(R4 ⊗ C) =

∧2

+
(R4 ⊗ C)⊕

∧2

−
(R4 ⊗ C). (3.3.16)

The self-dual part
∧2

+(R4 ⊗ C) is generated by

e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e3. (3.3.17)

The corresponding elements in the Clifford algebra are

γ(e1)γ(e2) + γ(e3)γ(e4) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0



+


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0




0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

 ,

=


−i 0 0 0

0 i 0 0
0 0 0 0
0 0 0 0

+


−i 0 0 0

0 i 0 0
0 0 0 0
0 0 0 0



=


−2i 0 0 0

0 2i 0 0
0 0 0 0
0 0 0 0

 .

(3.3.18)
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Similarly,

γ(e1)γ(e3)− γ(e2)γ(e4) =


0 2 0 0
−2 0 0 0

0 0 0 0
0 0 0 0

 ,

γ(e1)γ(e4) + γ(e2)γ(e3) =


0 −2i 0 0
−2i 0 0 0

0 0 0 0
0 0 0 0


(3.3.19)

Hence it follows that
∧2

+(R4 ⊗ C) can be identified with the space of trace-free endo-

morphisms of W+, which is precisely the Lie algebra of SU+(2). Similarly,
∧2
−(R4 ⊗ C)

is the space of trace-free endomorphisms of W−.

We define a quadratic map q : W+ →
∧2

+(R4 ⊗ C) as follows. Let ψ ∈ W+. As
W+ is finite dimensional, there is an isomorphism W+

∼= (W+)∗; and by the Riesz
representation theorem every ψ∗ ∈ (W+)∗ is defined by ψ∗ = 〈ψ,−〉. We set

q(ψ) = ψ ⊗ ψ∗ − |ψ|
2

2
Id . (3.3.20)

It is clear that q(ψ) ∈W+ ⊗ (W+)∗ ∼= EndC(W+), and we show q(ψ) defines an element
in
∧2

+(R4 ⊗ C).

Let ψ ∈W+ and consider its representation in components

ψ =

[
ψ1

ψ2

]
. (3.3.21)

Then

ψ ⊗ ψ∗ =

[
ψ1

ψ2

] [
ψ̄1 ψ̄2

]
=

[
|ψ1|2 ψ1ψ̄2

ψ̄1ψ2 |ψ2|2
]

(3.3.22)

and so

q(ψ) =
1

2

[
|ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ̄1ψ2 |ψ2|2 − |ψ1|2
]

(3.3.23)

Hence q(ψ) is a trace-free endomorphism of W+, and thus by the previous discussion
defines an element in

∧2
+(R4 ⊗ C).

Hence q(ψ) defines an complex self-dual two-form. However, we strengthen this and
show that q(ψ) is a purely imaginary self-dual two-form.

Proposition 3.3.4. q(ψ) is a purely imaginary self-dual two form.
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Proof. To show that q(ψ) is imaginary, it suffices to show that iq(ψ) is real.

Recall that R4 is represented by complex 2× 2 matrices of the form[
u v
−v u

]
. (3.3.24)

So L ∈ End(W+) is the representative of an element of R4 if

tr(L) ∈ R, and L+ L∗ = tr(L)I. (3.3.25)

Now, by definition tr q(ψ) = 0 for all ψ ∈W+. Hence, to show that iq(ψ) represents a
real-valued self-dual 2-form we need

0 = iq(ψ) + (iq(ψ))∗ = iq(ψ)− iq(ψ)
T

(3.3.26)

or equivalently

q(ψ) = q(ψ)
T
.

But this follows immediately as both I and ψ ⊗ ψ∗ are Hermitian matrices, and q(ψ) is
also Hermitian.

The groups Spin(4) and Spinc(4) act on End(W ) via the adjoint representation, denoted
by Ad and Adc, which is just conjugation by an element of the respective groups.
Explicitly, for T ∈ End(W ) and p = (A+, A−) ∈ Spin(4),

Ad(p)(T ) =

[
A+ 0
0 A−

]
T

[
A+ 0
0 A−

]−1
=

[
A+ 0
0 A−

]
T

[
A−1+ 0

0 A−1−

]
. (3.3.27)

Similarly, if p = [A+, A−, λ] ∈ Spinc(4),

Adc(p)(T ) =

[
λA+ 0

0 λA−

]
T

[
(λA+)−1 0

0 (λA−)−1

]
. (3.3.28)

Note that as Spin(4) and Spinc(4) act by conjugation, the action preserves the basis
(3.3.13), and so preserves the direct sum decomposition given in (3.3.15).

Now suppose that (X, g) is a Riemannian 4-manifold with a Spin(4), or Spinc(4)-
structure. We use the adjoint representations to construct a complex vector bundle over
X, whose fiber is the complexified Clifford algebra End(W ). This bundle is denoted as
Cl(X), and is called the Clifford bundle.
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As the adjoint action preserves the direct sum decomposition, we have the following
decomposition of the Clifford bundle

Cl(X) =
4⊕
i=0

∧k
TX ⊗ C ∼=

4⊕
i=0

∧k
T ∗X ⊗ C. (3.3.29)

Hence, we can view the Clifford bundle as being the exterior algebra of the cotangent
bundle, with a modified product.

We would like the maps γ and q defined previously to extend to bundle maps on Cl(X).
To be able to do this, they need to be equivariant with respect to the relevant group
actions. This turns out to be the case, as we now show.

Proposition 3.3.5. If v ∈ R4 ⊗ C, ψ ∈W+, and p = [A+, A−, λ] ∈ Spinc(4). Then

(I) Adc(p)γ(v) = γ(ρc(v)),

(II) Adc(p)q(ψ) = q(ρc+(ψ)),

where ρc and ρc+ are the spin representations defined in Section 3.1.

Proof. (I): Using (3.3.5),

Adc(p)γ(v) =

[
λA+ 0

0 λA−

][
0 −κ(v)

T

κ(v) 0

] [
(λA+)−1 0

0 (λA−)−1

]

=

[
λA+ 0

0 λA−

][
0 −κ(v)

T
(λA−)−1

κ(v)(λA+)−1 0

]

=

[
0 (λA+)(−κ(v)

T
)(λA−)−1

(λA−)κ(v)(λA+)−1 0

] (3.3.30)

Now, as λA± ∈ SU(2), (λA±)−1 = (λA±)
T

= λA±
T

. Hence

(λA+)(−κ(v)
T

)(λA−)−1 = (λA+)(−κ(v)
T

)λA−
T

= (λA+)−1
T
λA−(−κ(v))

T

= (λA−)(−κ(v))(λA+)−1
T
.

(3.3.31)

Therefore

Adc(p)γ(v) =

[
0 (λA−)(−κ(v))(λA+)−1

T

(λA−)κ(v)(λA+)−1 0

]

=

[
0 ρc(p)(−κ(v))

T

ρc(p)κ(v) 0

]
= γ(ρc(v)).

(3.3.32)
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(II): Identify End(W+) with the space of trace-free endomorphisms of W lying in the
upper 2× 2 block. Then [

q(ψ) 0
0 0

]
(3.3.33)

is an element of End(W ), and the action of Spinc(4) on this element is then

Adc(p)q(ψ) =

[
λA+ 0

0 λA−

] [
q(ψ) 0

0 0

] [
(λA+)−1 0

0 (λA−)−1

]
=

[
λA+ 0

0 λA−

] [
q(ψ)(λA+)−1 0

0 0

]
=

[
(λA+)q(ψ)(λA+)−1 0

0 0

]
.

(3.3.34)

On the other hand, recall that the dual of element ψ ∈W+ is given by the conjugate
transpose. Hence, as λA+ ∈ SU(2) we have

q(ρc+ψ) = (λA+ψ)⊗ (λA+ψ)∗ − |λA+ψ|2

2
I

= λA+ψ(λA+ψ)
T − |ψ|

2

2
I

= λA+ψψ
T

(λψ)
T − |ψ|

2

2
I

= (λA+)ψ ⊗ ψ∗(λA+)−1 − (λA+)
|ψ|2

2
I(λA+)−1

= λA+

(
ψ ⊗ ψ∗ − |ψ|

2

2
I
)

(λA+)−1

= (λA+)q(ψ)(λA+)−1.

(3.3.35)

Therefore

Adc(p)q(ψ) =

[
(λA+)q(ψ)(λA+)−1 0

0 0

]
=

[
q(ρc+(ψ)) 0

0 0

]
= q(ρc+(ψ)).

Hence, we see that the maps γ and q extend to bundle maps. Explicitly we have the
maps

γ : TX ⊗ C→ End(S),

q : Γ(S+)→ Ω2
+(X,C).

(3.3.36)

Further the maps inherit the same properties as shown in Proposition 3.3.3. Thus we
have constructed the Clifford multiplication map defined in Definition 3.3.1.
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Moreover, by Proposition 3.3.4, we see that q maps into the space of purely imaginary
self-dual two forms, and so q actually defines a map

q : Γ(S+)→ iΩ2
+(X). (3.3.37)

We may also extend the Clifford multiplication map γ to differential forms via the
Riemannian metric g. Suppose that {ei}4i=1 is a local orthonormal frame for TX, and
let {θi}4i=1 be the corresponding dual frame. Then every 1-form ω ∈ Ω1(X), is a linear
combination ω =

∑4
i=1 ωiθ

i which, by lowering the index, corresponds uniquely to the
vector field ω# =

∑4
i=1 ω̃

iei, where ω̃i = gijωj . We define Clifford multiplication by the
1-form ω as

γ(ω) := γ(ω#) =
4∑
i=1

ω̃iγ(ei). (3.3.38)

3.4 Spinc Connections

Let (X, g) be an oriented compact Riemannian 4-manifold and let Fr(X) be the or-
thonormal frame bundle of X. Let ∇ denote the Levi-Civita connection for TX. We
can also view ∇ as a connection ω on the frame bundle with values in so(4), the Lie
algebra of SO(4), i.e. ω is a 1-form

ω : T Fr(X)→ so(4). (3.4.1)

Let P be a Spinc-structure on X, with a determinant line bundle L2, and 2-sheeted
covering map

π : P → Fr(X)× L2. (3.4.2)

Finally, let A be a connection on the principal bundle L2, i.e. A is the 1-form

A : TL2 → iR, (3.4.3)

taking values in the Lie algebra of U(1) u(1) ∼= iR.

The connections ω and A define a connection ω×A on Fr(X)×L2 with values in so(4)⊕iR.
However, Fr(X) × L2 is the quotient of P by Z2, and as spinc(4) = so(4) ⊕ iR, the
connection ω×A lifts to a unique connection τ on P . In fact, we have the commutative
diagram

TP spinc(4)

T (Fr(X)× L2) so(4)⊕ iR,

dπ

τ

p∗

ω×A

(3.4.4)
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where p∗ is the differential of the map

p : Spinc(4)→ SO(4)×U(1),

p([A+, A−, λ]) =
(
ρ(A+, A−), λ2).

(3.4.5)

Consider the spinor bundle S associated to the Spinc-structure P , and let ψ ∈ Γ(S).
Then the differential of ψ is given by

DAψ = dψ + Adc∗(τ)ψ

= dψ + adc(τ)ψ,
(3.4.6)

which induces a covariant derivative

∇A : Γ(S)→ Γ(T ∗X ⊗ S) ∼= Γ
(

Hom(TX, S)
)
, (3.4.7)

on the spinor bundle.

Recall that TX acts on S via Clifford multiplication, and so for Y ∈ TX we have

DA(γ(Y )ψ) = d(γ(Y )ψ) + adc(τ)(γ(Y )ψ)

= γ(dY )ψ + γ(Y )dψ + adc(τ)(γ(Y )ψ).
(3.4.8)

We now examine the term adc(τ)(γ(Y )ψ) closely. Consider a tangent vector v ∈ TP ,
then t(v) ∈ (y, s) ∈ spinc(4) = spin(4)⊕ iR. Moreover,

adc(τ)(γ(Y )ψ) = (y + s)γ(Y )ψ = yγ(Y )ψ + γ(Y )(sψ). (3.4.9)

However, as y ∈ spin(4) and Y is a vector field, it follows that

ρ∗(y)X = ady(Y ) = yγ(Y )− γ(Y )y, (3.4.10)

where ρ∗ is the differential of the representation ρ : Spin(4)→ SO(4) defined in Section
3.1. Hence

yγ(Y ) = γ(Y )y + ρ∗(y)(Y ), (3.4.11)

and as ρ∗(y) = ω(dπ(v)), we have

adc(τ)(γ(Y )ψ) = γ(Y )
(

adc(τ)ψ
)

+ γ(ρ∗(ω)Y )ψ. (3.4.12)

Therefore

DA(γ(Y )ψ) = γ(dY )ψ + γ(Y )dψ + γ(Y )
(

adc(τ)ψ
)

+ γ(ρ∗(ω)Y )ψ

= γ
(
dY + ρ∗(ω)Y

)
ψ + γ(Y )

(
dψ + adc(τ)ψ

)
= γ(∇Y )ψ + γ(Y )DAψ,

(3.4.13)

which shows compatibility between Clifford multiplication and DA. We summarise the
previous discussion in the following proposition.
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Proposition 3.4.1. Suppose that X̃ and Ỹ are vector fields on X, and let ψ ∈ Γ(S)
be a spinor. Then the spinor covariant derivative with respect to any unitary connection
A on L2 satisfies the following compatibility condition:

∇A
Ỹ

(γ(X̃)ψ) = γ(X̃)∇A
Ỹ
ψ + γ(∇Ỹ X̃)ψ. (3.4.14)

Definition 3.4.2. The covariant derivative ∇A : Γ(S)→ Γ(T ∗X ⊗ S) which satisfies
the compatibility condition (3.4.14) is called a Spinc-connection.

We provide a local description of a Spinc-connection ∇A. Let e : U → Fr(X) be a local
section of the frame bundle. Then e is a local orthonormal frame of vector fields on
U ⊂ X. The local representation of the Levi-Civita connection ωe = e∗(ω) : TU → so(4)
is then given by

ωe =
∑
i<j

ωijEij , (3.4.15)

with Eij the basis matrices of so(4); and ωij are the 1-forms defining the Levi-Civita
connection ωij = g(∇ei, ej). Similarly, fix a section s : U → L2, and take the local form

As = s∗(A) : TU → iR. (3.4.16)

Now, e× s : U → Fr(X)× L2 is a local section of the principal bundle Fr(X)× L2, and
let ẽ× s denote the lifting of this section to the principal bundle P . As

(ẽ× s)∗(p∗(τ)) = (ẽ× s)∗π∗(ω ×A)

= (π ◦ ẽ× s)∗(ω ×A)

= (e× s)∗(ω ×A)

= (ωe, As)

=
(∑
i<j

ωijEij , A
s
)
,

(3.4.17)

by the commutativity of (3.4.4). We have an extension of (3.4.4) given by

TP spinc(4)

TU T (Fr(X)× L) so(4)⊕ iR.

dπ

τ

p∗
dẽ×s

d(e×s) ω×A

(3.4.18)

We wish to find a local representative of τ ẽ×s. In order to obtain this, we need a relation
between Eij and γ(ei)γ(ej).
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Proposition 3.4.3. If ρ : Spin(4)→ SO(4) is the spin representation, then its differ-
ential is given by

ρ∗ : spin(4)→ so(4)

ρ∗(γ(ei)γ(ej)) = 2Eij ,
(3.4.19)

for all i < j.

Proof. [Fri00]

Therefore, Eij corresponds to the element 1
2γ(ei)γ(ej), and so the local description of

the connection is given by

τ ẽ×s =
(1

2

∑
i<j

ωijγ(ei)γ(ej),
1

2
As
)
. (3.4.20)

From this, it follows that the covariant derivative of ψ ∈ Γ(S) is given by

∇Aψ = dψ +
1

2

∑
i<j

ωijγ(ei)γ(ej) +
1

2
Asψ. (3.4.21)

From (3.4.21), it is clear that ∇A is invariant on the bundles Γ(S±); as γ(ej) will map
Γ(S±) to Γ(S∓), and following with γ(ei) maps back to Γ(S±).

Recall that the space of connections on L2 is affine over iΩ1(X), and so for two
connections A and A′, the difference A′ −A is a iR-valued one-form a. Using (3.4.21),
we have

∇AXψ −∇A
′

X ψ =
1

2
A(X)ψ − 1

2
A′(X)ψ

=
1

2
(A−A′)(X)ψ

=
1

2
a(X)ψ.

(3.4.22)

We summarise the previous results in the following proposition.

Proposition 3.4.4. Let ∇A be a Spinc connection on X. Then we have the following:

(I) For any X ∈ TX, we have ∇AX : Γ(S±)→ Γ(S±).

(II) If A and A′ are two unitary connections on the determinant line bundle L2; then
A′ = A+ a for some a ∈ iΩ(X), and

∇A′ = ∇A +
1

2
a. (3.4.23)
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We now look at the curvature of the spin connection ∇A. Let Ω : T Fr(X)× T Fr(X)→
so(4) denote the curvature form of the Levi-Civita connection, given locally by

Ω =
∑
i<j

ΩijEij , (3.4.24)

where Ωij ∈ Ω2(X). Let FA denote the curvature of connection A on the determinant
line bundle, i.e. FA = dA. From the commutativity of (3.4.18) we see that

Ωτ =
1

2

∑
i<j

π∗(Ωij)γ(ei)γ(ej)⊕
1

2
π∗(FA). (3.4.25)

Hence it follows that

ΩAψ = (∇A ◦ ∇A)ψ =
1

2

∑
i<j

Ωijγ(ei)γ(ej)ψ +
1

2
FAψ. (3.4.26)

Suppose e1, e2, e3, e4 is a local orthonormal frame and set

Rijkl = Ωij(ek, el), (3.4.27)

so that

Ωij =
∑
k<l

Rijklθ
k ∧ θl =

1

2

4∑
k,l=1

Rijklθ
k ∧ θl, (3.4.28)

where θ1, θ2, θ3, θ4 is the coframe dual to e1, e2, e3, e4. The Rijkl are the components of
the Riemann-Christoffel curvature tensor.

Proposition 3.4.5. The components of the Riemann-Christoffel tensor satisfy the
following identities:

(I) (Symmetry): Rijkl = Rklij.

(II) (Skew-Symmetry): Rijkl = −Rjikl, and Rijkl = −Rijlk.

(III) (Algebraic Bianchi): Rijkl +Riklj +Riljk = 0.

Proof. A proof can be found in any book on Riemannian geometry, e.g. [Lee18] or
[Jos17].

Hence we can rewrite (3.4.21) as

ΩAψ =
1

2

∑
i<j

(∑
k<l

Rijklθ
k ∧ θl

)
γ(ei)γ(ej)ψ +

1

2
FAψ,

=
1

8

∑
i,j

(∑
k,l

Rijklθ
k ∧ θl

)
γ(ei)γ(ej)ψ +

1

2
FAψ.

(3.4.29)
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Define

s =
4∑

i,j=1

Rijji, (3.4.30)

to be the scalar curvature of X, and we claim that

4∑
i,j=1

γ(ei)γ(ej)Ω
A(ei, ej) =

s

2
+
∑
i<j

FA(ei, ej)γ(ei)γ(ej). (3.4.31)

To see this: substitute the local formula for ∇A into the left hand side of (3.4.31) to get

4∑
i,j=1

γ(ei)γ(ej)Ω
A(ei, ej) =

4∑
i,j=1

γ(ei)γ(ej)

(
1

2

∑
k<l

Ωkl(ei, ej)γ(ek)γ(el)

+
1

2
FA(ei, ej)

)
=

1

4

4∑
i,j,k,l=1

Rklijγ(ei)γ(ej)γ(ek)γ(el)

+
1

2

4∑
i,j=1

FA(ei, ej)γ(ei)γ(ej)

=
1

4

4∑
i,j,k,l=1

Rijklγ(ei)γ(ej)γ(ek)γ(el)

+
∑
i<j

FA(ei, ej)γ(ei)γ(ej),

(3.4.32)

by the symmetry of Rijkl. It remains to look at the term

1

4

4∑
i,j,k,l=1

Rijklγ(ei)γ(ej)γ(ek)γ(el). (3.4.33)

If i, j, k, and l are all distinct, then

Rijklγ(ei)γ(ej)γ(ek)γ(el) +Rikljγ(ei)γ(ek)γ(el)γ(ej)

+Riljkγ(ei)γ(el)γ(ej)γ(ek) = γ(ei)γ(ej)γ(ek)γ(el)
(
Rijkl +Riklj +Riljk

) (3.4.34)

which is 0 by the algebraic Bianchi identity. Similarly, if i, j, and l are distinct

Rijilγ(ei)γ(ej)γ(ei)γ(el)

+Rilijγ(ei)γ(el)γ(ei)γ(ej) = γ(ei)γ(ej)γ(ei)γ(el)
(
Rijil −Rilij

)
= γ(ei)γ(ej)γ(ei)γ(el)

(
Rijil −Rijil

)
= 0,

(3.4.35)
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by symmetry of curvature components. Therefore the only terms that are non-zero in
(3.4.33) are those which contain Rijij or Rijji. Hence

4∑
i,j,k,l=1

Rijklγ(ei)γ(ej)γ(ek)γ(el)

=

4∑
i,j=1

Rijijγ(ei)γ(ej)γ(ei)γ(ej)

+
4∑

i,j=1

Rijjiγ(ei)γ(ej)γ(ej)γ(ei)

= −
4∑

i,j=1

Rijij +

4∑
i,j=1

Rijji

= 2
4∑

i,j=1

Rijji = 2s,

(3.4.36)

by skew-symmetry of the curvature components, proving (3.4.31).

3.5 Dirac Operators

Suppose X is a 4-dimensional Riemannian manifold with a Spinc-structure. Let ∇A
denote the Spinc(4)-connection, and let S be the corresponding spinor bundle.

Definition 3.5.1. The Dirac operator /DA is the first order differential operator
given by the composition

Γ(S) Γ(T ∗X ⊗ S) Γ(TX ⊗ S) Γ(S).∇A ∼= γ
(3.5.1)

Note we have identified T ∗X ∼= TX via the Riemannian metric.

Locally, the Dirac operator is given by

/DA : Γ(S)→ Γ(S) (3.5.2)

given by

/DAψ =

4∑
i=1

γ(ei)∇Aeiψ, (3.5.3)

where {ei}4i=1 is a local orthonormal frame for TX, and ψ ∈ Γ(S). From this it is clear
that /DA is linear, and (3.5.1) implies that /DA is independent of the choice of local
frame.
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Definition 3.5.2. A spinor ψ ∈ Γ(S) is harmonic if /DAψ = 0.

However, the spinor bundle S splits into the positive and negative spinor bundles S±.
Hence, the Dirac operator /DA splits into a sum of the operators /D

±
A : Γ(S±)→ Γ(S∓),

with

/DA =

[
0 /D

−
A

/D
+
A 0

]
. (3.5.4)

Proposition 3.5.3. The Dirac operator /D
±
A is well-defined. i.e. /D

±
A maps Γ(S±) to

Γ(S∓).

Proof. By Proposition 3.4.4 the action of the connection ∇A sends Γ(S±) to Γ(S±)
while the action of Clifford multiplication sends Γ(S±) to Γ(S∓).

The Dirac operator also has the following properties.

Proposition 3.5.4. Let ψ ∈ Γ(S) be a spinor. Then

(I) (Leibniz Rule): If f : X → R is a smooth map, then

/DA(fψ) = γ(df)ψ + f /DAψ (3.5.5)

(II) If A′ = A+ a is another connection on L2, then

/DA+aψ = /DAψ +
1

2
γ(a)ψ. (3.5.6)

Proof. Let e1, . . . , e4 be an orthonormal basis for TX. Using the Leibniz rule, and
(3.3.38) we have

/DA(fψ) =

4∑
i=1

γ(ei)∇Aei(fψ)

=

4∑
i=1

γ(ei)
(
df(ei)ψ + f∇Aeiψ

)
=

4∑
i=1

df(ei)γ(ei)ψ + f
4∑
i=1

γ(ei)∇Aeiψ

= γ(df)ψ + f /DAψ,

(3.5.7)
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which proves (I). Similarly

/DA+aψ =

4∑
i=1

γ(ei)∇A+aei ψ

=

4∑
i=1

γ(ei)
(
∇Aeiψ +

1

2
a(ei)ψ

)
=

4∑
i=1

γ(ei)∇Aeiψ +
1

2

4∑
i=1

a(ei)γ(ei)ψ

= /DAψ +
1

2
γ(a)ψ,

(3.5.8)

proving (II).

The following is an important property of the Dirac operator.

Theorem 3.5.5. Let X be a compact 4-dimensional Spinc manifold. Then the Dirac
operator /DA : Γ(S)→ Γ(S) is formally self-adjoint. i.e. for any φ, ψ ∈ Γ(S)

∫
X

〈
/DAψ,ϕ

〉
dV =

∫
X

〈
ψ, /DAϕ

〉
dV, (3.5.9)

where dV is the volume form on X.

Proof. Let x ∈ X, and choose a local orthonormal frame {ei}4i=1 for TX such that
∇eiej = 0, for all i, j at x. As Clifford multiplication by unit vectors is a unitary
transformation, it follows that

〈
/DAψ, φ

〉
=

4∑
i=1

〈
γ(ei)∇Aeiψ, φ

〉
=

4∑
i=1

〈
γ(ei)γ(ei)∇Aeiψ, γ(ei)φ

〉
=

4∑
i=1

−
〈
∇Aeiψ, γ(ei)φ

〉
,

(3.5.10)
due to γ(ei)γ(ei) = −|ei|2 Id. Further, ∇A is a unitary connection,

ei 〈ψ, γ(ei)φ〉 =
〈
∇Aeiψ, γ(ei)φ

〉
+
〈
ψ,∇Aei

(
γ(ei)φ

)〉
. (3.5.11)
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Using this, and the Leibniz rule for a spin connection, we have

〈
/DAψ, φ

〉
= −

4∑
i=1

〈
∇Aeiψ, γ(ei)φ

〉
=

4∑
i=1

( 〈
ψ,∇Aei

(
γ(ei)φ

)〉
− ei 〈ψ, γ(ei)φ〉

)
=

4∑
i=1

( 〈
ψ, γ

(
∇eiei

)
φ
〉

+
〈
ψ, γ(ei)∇Aeiφ

〉
− ei 〈ψ, γ(ei)φ〉

)
=

4∑
i=1

( 〈
ψ, γ(ei)∇Aeiφ

〉
− ei 〈ψ, γ(ei)φ〉

)
=
〈
ψ, /DAφ

〉
−

4∑
i=1

ei 〈ψ, γ(ei)φ〉 .

(3.5.12)

Now, we can view 〈ψ, γ(ei)φ〉 as the ith component of some vector field Y . Then the
previous equation becomes 〈

/DAψ, φ
〉

=
〈
ψ, /DAφ

〉
+ div Y (3.5.13)

Now since all the terms in (3.5.13) are independent of the choice of coordinates, the
equality holds even if ∇eiej 6= 0. As∫

X
div Y dV = 0 (3.5.14)

by Stokes’ theorem (as X has empty boundary). The result now follows from integrating
(3.5.13).

Another important property of the Dirac operator is that it satisfies an associated
Linchnerowicz, or Weitzenböck formula, which gives a relationship between a Dirac
operator and the vector bundle Laplacian. But first, we need the definition.

Definition 3.5.6. The vector bundle Laplacian ∆A : Γ(S)→ Γ(S) is defined by

∆Aψ = −
4∑
i=1

(
∇Aei∇

A
eiψ −∇

A
∇Aeiei

ψ
)
. (3.5.15)

where e1, e2, e3, e4 is a local orthonormal frame for TX.



3.5. DIRAC OPERATORS 41

Remark 7. The term ∇A∇Aeiei
ψ is to make the vector bundle Laplacian independent of

the choice of frame. �

Theorem 3.5.7 (Lichnerowicz Formula). Let X be a 4-manifold with a Spinc-structure,
and A a connection on the determinant line bundle L2. Then

( /DA)∗ /DAψ = ∆Aψ +
s

4
ψ +

1

2

∑
i<j

FA(ei, ej)γ(ei)γ(ej)ψ, (3.5.16)

where ( /DA)∗ and (∇A)∗ are the formal adjoints of the operators /DA and ∇A repsectively;
s is the scalar curvature of X; and FA is the curvature of A.

Proof. Let e1, e2, e3, e4 be a local frame for TX such that ∇eiej = 0 for all i, j at x ∈ X.
Using that /DA is formally self-adjoint, we have

( /DA)∗( /DA)ψ =
( 4∑
i=1

γ(ei)∇Aei
)( 4∑

j=1

γ(ej)∇Aej
)
ψ

=

4∑
i,j=1

γ(ei)∇Aei
(
γ(ej)∇Aej

)
ψ

=
4∑

i,j=1

γ(ei)
(
γ(∇Aeiej)∇

A
ej + γ(ej)∇Aei∇

A
ej

)
ψ

=

4∑
i,j=1

γ(ei)γ(ej)∇Aei∇
A
ejψ

= −
4∑
i=1

∇Aei∇
A
eiψ +

1

2

4∑
i,j=1

γ(ei)γ(ej)
(
∇Aei∇

A
ej −∇

A
ej∇

A
ei

)
ψ

= −∆Aψ +
1

2

4∑
i,j=1

γ(ei)γ(ej)Ω
A(ei, ej)ψ.

(3.5.17)

Substituting (3.4.31), immediately gives (3.5.16).

3.5.1 The Atiyah-Singer Index Theorem

One can show that the Dirac operators /DA defines a first-order elliptic differential
operator. As /DA is an elliptic operator on a compact manifold, it is a Fredholm
operator, and ker /DA and coker /DA are both finite-dimensional. We define the index
of /DA to be the integer

ind( /DA) = dim
(

ker /DA

)
− dim

(
coker /DA

)
, (3.5.18)
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The index is actually a topological invariant, and can be computed in terms of certain
characteristic classes. This result is known as the Atiyah-Singer index theorem,
and is one of the major results of the 20th century. For the special case of a Dirac
operator on a 4-manifold we have the following.

Theorem 3.5.8 (Atiyah-Singer). Suppose X is a compact, oriented Spinc 4-manifold
with the correspond spinor bundle S. If /DA is a Dirac operator on the spinor bundle,
then

ind( /DA) = −1

8
τ(X) +

1

8

∫
X
c1(L

2) ^ c1(L
2)

=
−τ(X) +Q

(
c1(L

2), c1(L
2)
)

8
,

(3.5.19)

where τ(X) is the signature of X.

The Atiyah-Singer index theorem yields the following as a corollary.

Theorem 3.5.9 (Rokhlin). If X is a compact, oriented, smooth 4-manifold which is
spin, then the signature τ(X) is divisible by 16.

Proof. See [Fri00, Chapter 4]



Chapter 4

The Seiberg-Witten Equations

In this chapter we introduce the Seiberg-Witten equations. The solutions of said
equations have a natural action of a gauge group, which leads to the construction of
a moduli space of solutions. This moduli space will provide the basis for a proof of
Donaldson’s theorem.

4.1 The Seiberg-Witten Equations

Let (X, g) be an oriented Riemannian 4-manifold with a Spinc-structure and correspond-
ing spinor bundles S+, S−.

Definition 4.1.1. We define the configuration space of X to be

C(X) = A× Γ(S+), (4.1.1)

where A is the space of U(1)-connections on the determinant line bundle L2.

We are now ready to define the Seiberg-Witten equations.

Definition 4.1.2. The Seiberg-Witten equations are

/D
+
Aψ = 0,

F+
A = q(ψ),

(4.1.2)

for (A,ψ) ∈ C(X); where F+
A is the self-dual part of the curvature of A. We also define

the perturbed Seiberg-Witten equations as

/D
+
Aψ = 0,

F+
A = q(ψ) + φ,

(4.1.3)

43
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where φ is an imaginary self-dual two form, i.e. φ ∈ iΩ2
+(X).

We note that the equations are non-linear due to the q(ψ) terms, which are quadratic
in ψ.

To study the solutions of the Seiberg-Witten equations, it will be useful to redefine the
equations as the level-set of a smooth map.

Definition 4.1.3. The perturbed Seiberg-Witten map is the map

Fφ : C(X)→ Γ(S−)× iΩ2
+(X),

(A,ψ) 7→ ( /D
+
Aψ, F

+
A − q(ψ)− φ).

(4.1.4)

It is clear that if (A,ψ) is a solution to (4.1.3), then (A,ψ) ∈ F−1φ (0, 0).

4.2 The Moduli Space

We wish to study the space of solutions to the Seiberg-Witten equations given a 4-
manifold with a Spinc-structure. Recall that the bundles S+ and S− have an action by
the group of bundle morphisms of L2 which cover the identity, i.e. the gauge group of
L2.

The group of gauge transformations is

G = C∞(X,U(1)), (4.2.1)

smooth functions from X to the circle group, by Corollary A.1.3.1. Note that g ∈ G
acts on C(X) by

g · (A,ψ) = (g∗A, g−1ψ) = (A+ 2g−1dg, g−1ψ). (4.2.2)

Definition 4.2.1. Suppose (A,ψ), (A′, ψ′) ∈ C(X), then we say that (A,ψ) and (A′, ψ′)
are gauge equivalent if there exists g ∈ G such that g · (A,ψ) = (A′, ψ′). It is clear
that this defines a equivalence relation on C(X). We denote the equivalence class of
(A,ψ) under gauge equivalence by [A,ψ].

We would want the solutions to the Seiberg-Witten equation to be invariant under
the action of G, which is equivalent to asking whether the Seiberg-Witten map is
G-equivariant. This is indeed the case; to See why, define an action of g ∈ G on
Γ(S−)× iΩ2

+(X) by
g · (ψ, η) = (g−1ψ, η). (4.2.3)

Then we have the following.
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Lemma 4.2.2. The Seiberg-Witten map is equivariant with respect to the action of G,
i.e., for all g ∈ G,

Fφ
(
g · (A,ψ)

)
= g · Fφ(A,ψ). (4.2.4)

Proof. Let g ∈ G, and set g(A) = A+ 2g−1dg. By the action of G on C(X) we have

Fφ
(
g · (A,ψ)

)
=
(
/D
+
g(A)(g

−1ψ), F+
g(A) − q(g

−1ψ)− φ
)
. (4.2.5)

However, expanding out (4.2.5), and noting that g maps into U(1), we see that

Fg(A) = FA+2g−1dg

= FA + 2d
(
g−1dg)

= FA,

q(g−1ψ) = (g−1ψ)⊗ (g−1ψ)∗ − |g
−1ψ|2

2
Id

=
(
g−1g−1

)
ψ ⊗ ψ∗ − |g−1|2 |ψ|

2

2
Id

= ψ ⊗ ψ∗ − |ψ|
2

2
Id

= q(ψ).

(4.2.6)

For the term involving the Dirac operator, Proposition 3.5.4 gives

/D
+
g(A)ψ = /D

+
Aψ + γ(g−1dg)ψ

= g−1g /D
+
Aψ + g−1γ(dg)ψ

= g−1 /D
+
A(gψ).

(4.2.7)

Thus
/D
+
g(A)(g

−1ψ) = g−1 /D
+
A(gg−1ψ) = g−1 /D

+
Aψ, (4.2.8)

and so
Fφ
(
g · (A,ψ)

)
=
(
g−1 /D

+
Aψ, F

+
A − q(ψ)− φ

)
= g · Fφ(A,ψ). (4.2.9)

Corollary 4.2.2.1. The Seiberg-Witten equations are invariant under gauge transfor-
mation.

We now investigate the action of G further, and in particular, ask whether the action is
free. Suppose g ∈ G fixes (A,ψ), i.e.

(A+ 2g−1dg, g−1ψ) = (A,ψ). (4.2.10)

This occurs only if g is constant, and ψ = 0; and the stabiliser group at (A, 0) is S1.
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Definition 4.2.3. We say that (A,ψ) ∈ C(X) is reducible if ψ = 0, and irreducible
otherwise. i.e., (A,ψ) is reducible if it is fixed by the action of G.

Proposition 4.2.4. If X is simply-connected, then a reducible solution to the perturbed
Seiberg-Witten equations is unique up to gauge equivalence.

Proof. Suppose that (A, 0) and (A+ a, 0) are two reducible solutions, i.e.

F+
A = φ, and F+

A+a = F+
A + d+a = φ. (4.2.11)

Hence d+a = 0. However, we have the following short exact sequence

0 iΩ0(X) iΩ1(X) iΩ2
+(X) 0,d d+ (4.2.12)

and by Hodge theory ker d+ = ker d. Thus

dim

(
ker d+

im d

)
= b1(X) = 0, (4.2.13)

as X is simply-connected. Therefore d+a = 0 implies that a = df for some function
f : X → iR, and hence A+ a = A+ df . However, note that ef/2 ∈ G, and

A+ df = A+ 2
(
ef/2

)−1
d
(
ef/2

)
. (4.2.14)

Therefore (A, 0) is gauge equivalent to (A+ a, 0).

Definition 4.2.5.

G0 = {g ∈ G | g(x0) = 1} (4.2.15)

for some chosen base point x0 ∈ X. Further, we set B̃ = C(X)/G0.

We see that G0 fits into the short exact sequence

1 G0 G S1 1 (4.2.16)

which splits by the map

G → G0 × S1,

g 7→
(
g(x0)

−1g, g(x0)
)
.

(4.2.17)

The importance of G0 is that it is the non-constant elements of G (by (4.2.17)) and thus
acts freely on C(X). Hence, once C(X) given a topology, B̃ will be a smooth manifold.
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However, we wish to quotient C(X) by the full gauge group G. As we have shown that
the action is not free, it follows that B = C(X)/G will have singularities at the reducible
points (A, 0). We set

C∗ = {(A,ψ) ∈ C(X) | ψ 6= 0}, (4.2.18)

B∗ = C∗/G, (4.2.19)

B̃∗ = C∗/G0, (4.2.20)

which are the original spaces with these reducible points removed.

Definition 4.2.6. We define the moduli space of solutions to the perturbed Seiberg-
Witten equations to be

Mφ = {[A,ψ] ∈ B | Fφ(A,ψ) = 0}
= F−1φ (0, 0)/G.

(4.2.21)

We also set
M̃φ = {[A,ψ] ∈ B̃ | Fφ(A,ψ) = 0}

= F−1φ (0, 0)/G0,
(4.2.22)

which is the space of solutions to the perturbed Seiberg-Witten equations, modulo based
gauge transformations.

As stated before, we wish to view B∗ as an infinite dimensional manifold. This is possible
by modelling B∗ on an arbitrary Hilbert or Banach space, rather than Rn or Cn. In
order to do this, we need to complete our spaces of sections with respect to the Sobolev
norms.

Let E be a smooth O(n), or U(n)-bundle over a compact Riemannian manifold (X, g)
with connection ∇; and extend ∇ to Ωk(X,E) by (A.2.7). Hence if σ ∈ Γ(E), we set
∇kAσ = (∇A ◦ · · · ◦ ∇A)σ ∈ Ωk(X,E).

Definition 4.2.7. The kth Sobolev norm ‖·‖p,k on Γ(E) for p > 1 is defined as

‖σ‖p,k :=

(
k∑
i=0

∫
X
|∇iAσ|p dV

)1/p

, (4.2.23)

for σ ∈ Γ(E), and where ∇0
A is the identity.

Definition 4.2.8. We denote by Lpk(E), the completion of Γ(E) with respect to Sobolev
norm ‖·‖p,k.
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Changing the Riemannian metric g on X changes the resulting Sobolev norm on Γ(E).
Likewise, changing the choice of metric on E or the connection A on E also change the
norms. However, all these norms can be shown to be equivalent, and therefore do not
affect Lpk(E). More details can be found in [DK90].

Proposition 4.2.9. Lpk(E) is a Banach space for all p and k, and a Hilbert space for
p = 2.

We now use the Sobolev norms to topologise the configuration space C(X) which will
allow us to view B∗ as a manifold. From the definition, we see that there are many
possible choices for a Sobolev norm. However, we choose to use L2-spaces so that the
resulting spaces are Hilbert manifolds.

Suppose X has a Spinc-structure with line bundle L2. We denote the space of unitary
L2
k connections on L2 by AL2

k
. Similarly, we denote the space of L2

k configurations by

Ck(X) = AL2
k
× L2

k(S
+). (4.2.24)

If U(1) is the trivial U(1)-bundle over X, then we define Gk = L2
k(U(1)) to be the gauge

group of all L2
k maps from X to U(1). Finally Pk = L2

k(
∧2

+ T
∗X) is the space of L2

k

perturbations.

Now we let B have the quotient topology, and give Mφ the subspace topology induced
from B. For all k ≥ 2, we define Mφ,k to be the L2

k solutions to the perturbed
Seiberg-Witten equations modulo L2

k+1 gauge transformations.

Proposition 4.2.10. The configuration space Ck(X) is a smooth Hilbert manifold, and
Gk+1 is an infinite dimensional Lie group which acts smoothly on Ck(X). Moreover,
Mφ,2 is diffeomorphic toMφ,k for all k ≥ 2.

Proof. [Nic00]

Therefore, the moduli space of solutions is independent of the choice of Sobolev norm.
We only consider the case when k = 2, and when we write C(X), G, and Mφ the
appropriate Sobolev completion is understood.

4.3 Properties of the Moduli Space

The reason for studying the moduli space is because Mφ has a rich geometry. We state
the following properties of Mφ without proof, as they require technical results from
the theory of elliptic operators which is beyond the scope of this thesis. Proofs can be
found in [Moo01].
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The first of the properties is that Mφ is a compact topological space. More precisely:

Theorem 4.3.1 (Compactness). Let X be a smooth 4-manifold with a Spinc-structure.

Then for every choice of φ ∈ iΩ2
+(X), the moduli space M̃φ of solutions to the perturbed

Seiberg-Witten equations is compact.

The second property concerns the smooth structure of M̃φ.

Theorem 4.3.2 (Transversality). Let X be a compact smooth 4-manifold with a Spinc-
structure L2. Then

(I) If b2+(X) > 0, we can choose φ ∈ iΩ2
+(X), such that there are no reducible solutions

to the perturbed Seiberg-Witten equations, and M̃φ is an oriented smooth manifold.

(II) If b2+(X) = 0 and c1(L
2) is such that

ind( /D
+
A) =

−τ(X) +Q
(
c1(L

2).c1(L
2)
)

8
≥ 0,

then we can choose φ ∈ iΩ2
+(X) such that M̃φ is an oriented smooth manifold.

In either case, for a generic choice of φ ∈ iΩ2
+(X), M̃φ is an oriented smooth manifold

of dimension

dim(M̃φ) = 2 ind( /D
+
A)− b2+(X) + b1(X). (4.3.1)

Strictly speaking the dimension given in Theorem 4.3.2 is a ‘formal’ dimension, due to
the fact that dim(M̃φ) could be negative. If the formal dimension dim(M̃φ) is negative,

then M̃φ = ∅.

By combining Theorem 4.3.1 and Theorem 4.3.2, we see that if X is a compact smooth 4-
manifold with a Spinc-structure and b2+(X) > 0. Then for a generic choice of φ ∈ iΩ2

+(X),
the smooth locus of Mφ (the restriction to the irreducible connections) is a compact,
oriented smooth manifold of dimension

dim(Mφ) = 2 ind( /DA)− b2+(X) + b1(X)− 1. (4.3.2)

This follows as quotienting by the residual S1 action lowers the dimension by 1.

4.4 Tangent Space of Mφ

In this section, we consider the tangent space T[A,ψ]M at a Seiberg-Witten solution
(A,ψ).
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Recall the Seiberg-Witten map defined in (4.1.4):

F : A× Γ(S+)→ Γ(S−)× iΩ2
+(X)

(A,ψ) 7→ ( /D
+
Aψ,F

+
A − q(ψ)),

(4.4.1)

which was defined such that solution space to the Seiberg-Witten equations is the level
set F−1(0, 0), and the moduli space is M = F−1(0, 0)/G. For simplicity, we write

F = Γ(S−)× iΩ2
+(X), (4.4.2)

and compute the derivative

dF |(A,ψ) : T(A,ψ)C → T(0,0)F (4.4.3)

of F at a Seiberg-Witten solution (A,ψ).

Since Γ(S±) and iΩ2
+(X) are vector spaces, they are their own tangent spaces. Since A

is an affine space over iΩ1(X) it follows that iΩ1(X) is its tangent space. Hence we
compute dF using curves. So let ϕ ∈ Γ(S+) and θ ∈ A, and consider the curve

t 7→ F (A+ tθ, ψ + tϕ). (4.4.4)

Then

dF |(A,ψ)(θ, ϕ) =
d

dt

∣∣∣∣
t=0

F (A+ tθ, ψ + tϕ). (4.4.5)

Now

F (A+ tθ, ψ + tθ) =
(
/D
+
A+tθ(ψ + tϕ), F+

A+tθ − q(ψ + tϕ)
)

=
(
/D
+
A+tθ(ψ + tϕ), F+

A + td+θ − q(ψ + tϕ)
)
.

(4.4.6)

By expanding the first term, we obtain

/D
+
A+tθ(ψ + tϕ) = /D

+
A(ψ + tϕ) +

1

2
tγ(θ)(ψ + tϕ)

= /D
+
Aψ + t /D

+
Aϕ+

1

2
tγ(θ)ψ +

1

2
t2γ(θ)ϕ

= t
(
/D
+
Aϕ+

1

2
γ(θ)ψ

)
+

1

2
t2γ(θ)ϕ,

(4.4.7)

by Proposition 3.5.4, the fact that /D
+
A is linear, and ψ is a harmonic spinor. Also

q(ψ + tϕ) = (ψ + tϕ)⊗ (ψ + tϕ)∗ − 1

2
|ψ + tϕ|2 Id

= ψ ⊗ ψ∗ + tψ ⊗ ϕ∗ + tϕ⊗ ψ∗ + t2ϕ⊗ ϕ∗

− 1

2

(
|ψ|2 + t 〈ψ,ϕ〉+ t 〈ϕ,ψ〉+ t2|ϕ|2

)
Id

= q(ψ) + t2q(ϕ) + t
(
ψ ⊗ ϕ∗ + ϕ⊗ ψ∗ − 1

2
〈ψ,ϕ〉 Id−1

2
〈ψ,ϕ〉 Id

)
.

(4.4.8)
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However, F+
A = q(ψ), and so

F+
A + td+θ − q(ψ + tϕ) = t

(
d+θ − ψ ⊗ ϕ∗ − ϕ⊗ ψ∗ +

1

2
〈ψ,ϕ〉 Id +

1

2
〈ψ,ϕ〉 Id

)
− t2q(ϕ).

(4.4.9)
Therefore

dF |(A,ψ)(θ, ϕ) =
(
/D
+
Aϕ+ 1

2γ(θ)ψ, d+θ − ψ ⊗ ϕ∗ − ϕ⊗ ψ∗ + 1
2 〈ψ,ϕ〉 Id +1

2〈ψ,ϕ〉 Id
)

(4.4.10)

We also calculate the differential of the gauge action G. Consider the gauge action as a
map

g : G → C
g(g) = (A+ 2g−1dg, g−1ψ).

(4.4.11)

Since X is simply-connected, we can write g = ef for some smooth function f : X → iR,
so that

g(g) = (A+ 2df, e−fψ). (4.4.12)

The tangent space of G at 1 is the space of all functions f : X → iR, which is iΓ(X×R);
i times sections of the trivial bundle. Now consider the curve

t 7→ g(etf ). (4.4.13)

We compute the derivative of g

dg|1 : T1G → T(A,ψ)C (4.4.14)

using this curve. As

g(etf ) = (A+ 2tdf, e−tfψ), (4.4.15)

we have

dg|1(f) =
d

dt

∣∣∣∣
t=0

g(etf ) = (2df,−fψ). (4.4.16)

Consider now the following composition

0 T1G T(A,ψ)C T(0,0)F 0.
dg|1 dF |(A,ψ)

(4.4.17)

Proposition 4.4.1. At a solution (A,ψ) to the Seiberg-Witten equations, (4.4.17) is a
differential complex.
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Proof. We need to show that dF |(A,ψ) ◦ dg|1 = 0. A direct calculation gives

dF |(A,ψ)
(
dg|1(f)

)
= dF |(A,ψ)(2df,−fψ)

=
(
/D
+
A(−fψ) + 1

2γ(2df)ψ, d+(2df)− (−fψ)⊗ ψ∗

− ψ ⊗ (−fψ)∗ + 1
2 〈ψ,−fψ〉 Id +1

2〈ψ,−fψ〉 Id
)

=
(
/D
+
A(−fψ) + γ(df)ψ, fψ ⊗ ψ∗ + fψ ⊗ ψ∗

− 1
2f 〈ψ,ψ〉 Id−

1
2f 〈ψ,ψ〉 Id

)
=
(
/D
+
A(−fψ) + γ(df)ψ, (f + f)ψ ⊗ ψ∗ − 1

2(f + f)|ψ|2 Id
)
.

(4.4.18)
However, recall that f is purely imaginary and so f = −f . Moreover, by Proposition 3.5.4
we have

/D
+
A(−fψ) + γ(df)ψ = −γ(df)ψ + f /D

+
Aψ + γ(df)ψ = 0, (4.4.19)

as ψ is a harmonic spinor. Therefore,

dF |(A,ψ)
(
dg|1(f)

)
= (0, 0) (4.4.20)

as required.

Definition 4.4.2. The differential complex (4.4.17) is called the Seiberg-Witten
complex.

The Seiberg-Witten complex is intimately related to the tangent space T[A,ψ]M. Suppose
that (A,ψ) is a regular value of F , i.e. dF |(A,ψ) is surjective. Then ker dF |(A,ψ)
is the tangent space to the space of Seiberg-Witten solutions, i.e. ker dF |(A,ψ) =
T(A,ψ)F

−1(0, 0). Now consider the case that (A,ψ) is an irreducible solution. Then G
embeds onto the orbit of (A,ψ), and so im dg|1 represents the tangent space to this
orbit at (A,ψ). i.e. we have im dg|1 = T(A,ψ)

(
G · (A,ψ)

)
.

Therefore, in M = F−1(0, 0)/G, the tangent space to [A,ψ] is exactly

T[A,ψ]M = T(A,ψ)F
−1(0, 0)/T(A,ψ)

(
G · (A,ψ)

)
= ker dF |(A,ψ)/ im dg|1. (4.4.21)

Notice that this is precisely the first cohomology group of the Seiberg-Witten complex.
We investigate this relationship further.

Let SW denote the Seiberg-Witten complex. Then the zeroth cohomology group is

H0
(A,ψ)(SW) = ker dg|1. (4.4.22)
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Note that H0
(A,ψ)(SW) is trivial if, and only if, G acts freely at (A,ψ). The first

cohomology group is
H1

(A,ψ)(SW) = ker dF |(A,ψ)/ im dg|1, (4.4.23)

and is called the Zariski tangent space of M. By the previous work, it is likely to
be the true tangent space T[A,ψ]M. The second cohomology group is

H2
(A,ψ)(SW) = coker dF |(A,ψ), (4.4.24)

and it measure the failure of (A,ψ) being a regular value of F . Hence, we call H2
(A,ψ)(SW)

the obstruction space at (A,ψ).

Lemma 4.4.3. If for all Seiberg-Witten solutions (A,ψ) we have H0
(A,ψ)(SW) = 0 and

H2
(A,ψ)(SW) = 0, then M is either empty or is a smooth compact submanifold of B∗.

Moreover, if this is the case, we have

T[A,ψ]M = H1
(A,ψ)(SW). (4.4.25)

Proof. The vanishing of H2
(A,ψ)(SW) for all (A,ψ) implies that (0, 0) is a regular value

of F . Therefore the solution space F−1(0, 0) is either empty, or is a smooth submanifold
of C by the inverse function theorem. The vanishing of H0

(A,ψ)(SW) for all (A,ψ) implies

that there are no reducible solutions. Hence the gauge group G acts freely on F−1(0, 0),
and so M = F−1(0, 0)/G is a smooth submanifold of B∗.

Compactness follows from Theorem 4.3.1.

Using Theorem 4.3.2, we see that the obstruction space can always be made to vanish
by perturbing the Seiberg-Witten equations. In fact, the Seiberg-Witten complex is
used extensively to prove the statements of Theorem 4.3.2.

Recall that G has a subgroup of based gauge transformations G0 which acts freely. We
defined the space M̃ = F−1(0, 0)/G0, and by the transversality theorem, Theorem 4.3.2,

we can always take a perturbation such that M̃φ is a smooth submanifold.

We wish to find an explicit representation of T[A,0]M̃φ where [A, 0] is the unique reducible
point for the G action, as this is pivotal in the proof of Donaldson’s theorem. Now, by
Lemma 4.4.3 we see that

TrM̃φ = H1
(A,0)(SW) (4.4.26)

as G0 acts freely at r so that H0
(A,0)(SW) vanishes. However, computing the derivatives

of the Seiberg-Witten map and the gauge action at the reducible point gives

dF |(A,0)(θ, ϕ) = ( /D
+
Aϕ, d

+θ), (4.4.27)
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and
dg|1(f) = (2df, 0). (4.4.28)

Thus the Seiberg-Witten complex at the reducible point is given by

0 iΓ(X × R) iΩ(X)× Γ(W+ ⊗ L) iΩ2
+(X)× Γ(W− ⊗ L) 0

(2d,0) d+⊕ /D+
A

(4.4.29)
The first cohomology group of is therefore

H1
(A,0)(SW) =

ker(d+ ⊕ /D
+
A)

im(2d, 0)
= ker /D

+
A ⊕

ker d+

im d
= ker /D

+
A ⊕H1(X;R), (4.4.30)

as ker d+ = ker d by Hodge theory. Therefore, in the case that X is simply-connected,
we have

T[A,0]M̃φ = ker /D
+
A ⊕H1(X;R) = ker /D

+
A. (4.4.31)



Chapter 5

Donaldson’s Theorem

Let X be a compact, oriented, simply connected 4-manifold (topological or smooth).
Without a loss of generality (by passing to connected components) we may also assume
that X is connected. We wish to provide a classification of X up to homeomorphism.

5.1 Characteristics

Suppose that Q is the intersection form of X. Then we have the following definition.

Definition 5.1.1. An element x ∈ H2(X;Z) is a characteristic if for all y ∈ H2(X;Z)

Q(x, y) = Q(y, y) (mod 2). (5.1.1)

Hence we see that 0 ∈ H2(X;Z) is a characteristic element if, and only if, Q is even. The
reason we are interested in characteristics is because they correspond to Spinc-structures
on X. But first, we show the existence of such elements.

Lemma 5.1.2. Suppose Q is a symmetric, bilinear, and unimodular form on a free
Z-module Z. Then there exists a characteristic element.

Proof. Let Z̃ = Z/2Z and Q̃ = Q (mod 2). Then we have a symmetric, bilinear,
unimodular Z2-form

Q̃ : Z̃ × Z̃ → Z2. (5.1.2)

Now unimodularity implies that for every Z2-linear function f : Z̃ → Z2, there exists
x̃f ∈ Z̃ such that f(·) = Q̃(x̃f , ·). However, for all a, b ∈ Z

Q(a+ b, a+ b) = Q(a, a) + 2Q(a, b) +Q(b, b) = Q(a, a) +Q(b, b) (mod 2), (5.1.3)
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and so it follows that the function f : Z̃ → Z2 defined by f(x̃) = Q̃(x̃, x̃) is Z2-linear.
Thus there exists ỹ ∈ Z̃ such that Q̃(ỹ, x̃) = Q̃(x̃, x̃), i.e.

Q(ỹ, x̃) = Q(x̃, x̃) (mod 2) (5.1.4)

for all x̃ ∈ Z̃. However, ỹ and x̃ represent cosets of Z, and so there exists x, y ∈ Z such
that ỹ = y (mod 2) and x̃ = x (mod 2). Therefore we have

Q(y, x) = Q(x, x) (mod 2) (5.1.5)

for all x ∈ Z, and so y is a characteristic.

Corollary 5.1.2.1. There exists a characteristic element for the intersection form.

Before we show the correspondence of Spinc-structures and characteristics, we state a
result which relates characteristics to Spin-structures.

Proposition 5.1.3. Let w2(TX) be the second Stiefel-Whitney class of X. Then the
mod 2 reduction of a characteristic element c is w2(TX), i.e. c = w2(TX) (mod 2).

Proof. We need to show that any characteristic is the integral lift of the second Stiefel-
Whitney class. This follows from an alternate definition of w2(TX) via the Steenrod
operations, along with Wu’s formula. A detailed proof can be found in [MS74].

As a corollary to Proposition 5.1.3, we see if X has a Spin-structure then 0 is a
characteristic element; i.e., the intersection form of X is even. Conversely, if H2(X;Z)
is torsion-free (which is true by assumption as X is simply connected) then X admits
Spin-structures if the intersection form is even. Explicitly, we have the following.

Corollary 5.1.3.1. A compact, oriented, simply-connected smooth 4-manifold X has a
Spin-structure if, and only if, its intersection form Q is even.

Example 5.1.4. We now finally show that the ME8 manifold is not smoothable. Recall
that ME8 is the manifold whose intersection form is

E8 =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 0 −1
−1 2 −1 0

0 −1 2 0
−1 0 0 2


(5.1.6)
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which is even. Hence by Proposition 5.1.3, if ME8 is smooth then it is Spin. However
Rokhlin’s theorem, Theorem 3.5.9, implies that τ(ME8) ≡ 0 (mod 16); which is a
contradiction as τ(ME8) = 8. Therefore, ME8 is not smoothable as claimed. J

Theorem 5.1.5. Suppose that L2 is a Spinc-structure on a compact, oriented, and
smooth 4-manifold; then c1(L

2) is a characteristic element. Conversely, any character-
istic element is c1(L

2) for some Spinc-structure L2 on X.

Proof. Suppose that L2 is a Spinc-structure on X, and let E be a complex line bundle
over X. Then L2 ⊗ E is a second Spinc-structure on X, with Chern class

c1(L
2 ⊗ E) = c1(L

2) + 2c1(E).

Using the Atiyah-Singer index theorem, we compute the indicies of the Dirac operator
relative to the Spinc-structures L2, L2 ⊗ E, and consider the difference

1

8
Q(c1(L

2), c1(L
2))− 1

8
Q(c1(L

2 ⊗ E), c1(L
2 ⊗ E)) ∈ Z. (5.1.7)

However, this implies that

1

2
Q(c1(L

2), c1(E)) +
1

2
Q(c1(E), c1(E)) ∈ Z, (5.1.8)

and so

Q(c1(L
2), c1(E)) = Q(c1(E), c1(E)) (mod 2). (5.1.9)

As every element x ∈ H2(X;Z) is the first Chern class c1(E) for some complex line
bundle E over X, it follows that c1(L

2) is a characteristic.

By Theorem 3.2.3, X has a Spinc-structure L2 and c1(L
2) is a characteristic by the

previous work. Suppose that x is another characteristic. Then for all y ∈ H2(X;Z),

Q(y − c1(L2), y) = 0 (mod 2), (5.1.10)

and so there exists a line bundle E over X such that

c1(E
2) = 2c1(E) = y − c1(L2). (5.1.11)

Therefore, L2 ⊗ E is another Spinc-structure on X with

c1(L
2 ⊗ E) = c1(L

2) + 2c1(E) = y. (5.1.12)
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5.2 Donaldson’s Theorem

Theorem 5.2.1 (Donaldson, [Don83]). Let X be a compact, oriented, simply-connected
smooth 4-manifold with negative definite intersection form

(
H2(X,Z), Q

)
. Then Q is

Z-diagonalisable, i.e. Q = −I = diag(−1,−1, . . . ,−1).

Proof. We proceed by cases.

Case 1: Suppose, for a contradiction, that
(
H2(X,Z), Q

)
is even, and b2(X) > 0.

Since is Q is even, it is spin by Corollary 5.1.3.1. Thus X has a Spinc-structure with
L ∼= X × C, the trivial line bundle (c1(L) = 0). By the Atiyah-Singer index theorem
Theorem 3.5.8

ind( /D
+
A) =

−τ(X) +Q
(
c1(L), c1(L)

)
8

= −τ(X)

8

=
b2−(X)

8
> 0.

(5.2.1)

So by the transversality theorem, Theorem 4.3.2, there exists a pertubation φ such that
M̃φ is smooth and of dimension

dim(M̃φ) = 2 ind( /D
+
A)− b2+(X) + b1(X) =

b2−(X)

4
> 0, (5.2.2)

and there is exactly one reducible point [A0, 0] ∈ M̃φ by Proposition 4.2.4. As S1 = U(1)

is a Lie group which acts freely on M̃φ except at the reducible point [A0, 0], it follows

that Mφ = M̃φ/S
1 is a smooth manifold except at [A0, 0] ∈ M̃φ. The question now is:

what is the topology around this reducible point?

By Section 4.4 we know
T[A0,0]M̃φ = ker( /D

+
A0

), (5.2.3)

and we claim the induced action of U(1) on T[A0,0]M̃φ is free. To see this, suppose that g
is a Riemannian metric for X. Firstly, by averaging over the U(1)-action, we may assume

that U(1) acts by isometries. Now suppose, for a contradiction, that v ∈ T[A0,0]M̃φ

is fixed by some group element a ∈ U(1); and consider the curve γ(t) = etv, i.e.
γ(0) = [A0, 0] and γ′(0) = v. This is a geodesic through [A0, 0] with tangent vector v.
We claim that a · γ(t) = γ(t) for all t ∈ R, where γ(t) is defined. To see this, recall that
a geodesic is uniquely determined by the point it goes through, and the tangent vector
at that point. Thus it suffices to show

a · exp(0) = exp(0), and a∗ · exp′(0) = exp′(0). (5.2.4)
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However, this true by assumption; as a fixes both [A0, 0] and v. Hence, a · γ(t) = γ(t)
in a small neighbourhood around 0 ∈ R. This, however, is a contradiction as we know
that [A0, 0] is the only fixed point of U(1) in M̃φ. Therefore the induced U(1) action

on T[A0,0]M̃φ is free as claimed.

However, ker( /D
+
A0

) is naturally a complex vector space Cm, and so the free S1 action is
just scalar multiplication by U(1) ⊆ C. Therefore the topology around [A0, 0] ∈ Mφ

is Cm/U(1). Now, thinking of Cm as a cone over S2m−1 (via polar decomposition),
quotienting out by the circle action gives a cone over

S2m−1/S1 ∼= CPm−1. (5.2.5)

Thus Mφ is smooth, except for one point where it looks like a cone over CPm−1.

Figure 5.1: The moduli space Mφ, with r = [A0, 0] the vertex of the cone

Consider an open neighbourhood N of [A0, 0]. Then B∗ ⊇M∗φ =Mφ \N is a compact

smooth manifold with boundary CPm−1. (Compactness follows as M̃φ is compact, see
Theorem 4.3.1.) Further, asMφ is oriented by the transversality theorem, Theorem 4.3.2,
it follows thatM∗φ is oriented; and therefore, we can integrate overM∗φ. Now by Stokes’
theorem ∫

CPm−1

c1(E)m−1 =

∫
∂M∗φ

c1(E)m−1 =

∫
M∗φ

d
(
c1(E)m−1

)
= 0, (5.2.6)

where E → CPm−1 is the universal bundle. However, E → CPm−1 is the Hopf bundle
associated to the S1-bundle S2m−1 → CPm−1 with Chern class 1 ∈ H2(CPm−1,Z) ∼= Z.
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So ∫
CPm−1

c1(E)m−1 6= 0,

which contradicts (5.2.6).

Therefore Q being negative-definite, and even cannot occur for compact, oriented, simply
connected smooth 4-manifolds.

Case 2: Suppose now that Q is odd. The same argument presented in case 1 will yield
a contradiction provided we can find a Spinc-structure on X such that ind( /D

+
A) > 0.

Recall that Spinc-structures are in a one-to-one correspondence with characteristics
c ∈ H2(X,Z) by Theorem 5.1.5. Thus

ind( /D
+
A) =

−τ(X) +Q(c, c)

8
=
b2−(X) +Q(c, c)

8
. (5.2.7)

Now, (5.2.7) will be positive provided we can find a characteristic c such that

−Q(c, c) < b2−(X) = rkQ. (5.2.8)

A result of N. Elkies [Elk95] shows that if Q is not diagonal, then such a characteristic
exists and will give a contradiction. Hence, Q must be diagonal.

Corollary 5.2.1.1. Let X be a compact, oriented, simply-connected smooth 4-manifold
with positive definite intersection form

(
H2(X,Z), Q

)
. Then Q is Z-diagonalisable, i.e.

Q = I.

When paired with Serre’s classification of indefinite forms, Theorem 2.3.7, the theorems
of Freedman and Donaldson yield the following remarkable corollary.

Corollary 5.2.1.2. Let X be a compact, oriented, simply connected smooth 4-manifold.
Then X is homeomorphic to one of the following:

S4, #nCP 2#mCP 2
, #n(S2 × S2)#mME8 .

Note that S4 comes from the zero form.

5.3 The 11/8-Conjecture

We wish to realise indefinite intersection forms Q by smooth 4-manifolds. If Q is odd

this is easy, it is realised by the connected sum #nCP 2#mCP 2
. However, if Q is even

then it is of the form
Q = ⊕nH ⊕m E8. (5.3.1)
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Taking n = 0 and m = 1 gives the form Q = E8 which gives rise to a non-smoothable
4-manifold. Therefore there are obstructions to realising even indefinite intersection
forms by smooth manifolds.

In fact, it is not immediate clear that (5.3.1) can be realised by a smooth 4-manifold.
However, consider the K3 surface, which is defined as the hypersurface in CP 3 given by
the equation

z41 + z42 + z43 + z44 = 0. (5.3.2)

The K3 surface is a smooth 4-manifold with the topological invariants b2(K3) = 22 and
τ(K3) = 16. Hence, Theorem 2.3.7 yields

QK3 = ⊕3H ⊕2 E8. (5.3.3)

Therefore, for certain pairs of n and m, (5.3.1) can be realised by a smooth 4-manifold.

The goal of this section is to investigate the conditions on n and m so that (5.3.1) is
realised by a smooth 4-manifold.

First, by Rokhlin’s theorem, m must be even and so

Q = ⊕nH ⊕2k E8. (5.3.4)

Secondly, as Q is indefinite n ≥ 1. Moreover, increasing n is not the obstruction to
smoothness. For this is just the action of adding connected sums of S2 × S2, which is
smooth. Therefore the obstruction to smoothness is the minimum number of H’s in Q.

It is conjectured by Y. Matsumoto that

Conjecture 5.3.1 (11/8-conjecture, [Mat82]). Every smooth 4-manifold X with even
intersection form satisfies the inequality

b2(X) ≥ 11

8
|τ(X)|. (5.3.5)

The 11/8-conjecture can be rephrased in the following: The intersection form Q =
⊕nH ⊕2k E8 is realised by a smooth 4-manifold if, and only if, n ≥ 3k. Therefore it is
conjectured that Q needs at least 3 H’s for every pair of E8’s in Q to be realised by a
smooth 4-manifold.

Note that only if direction of the 11/8-conjecture is true. As the form is realised by the
smooth 4-manifold

#n−3k(S2 × S2)#kK3. (5.3.6)

One of the first steps towards a proof of the 11/8-conjecture was made by Donaldson.
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Theorem 5.3.2 ([Don86], [Don87]). The forms H and H⊕H are the only intersection
forms that are realised by smooth 4-manifolds with b2+ = 1 or b2+ = 2.

Equivalently, Theorem 5.3.2 states that if k ≥ 1, then n ≥ 3. Hence after S4 and
#n(S2 × S2), K3 has the simplest intersection form which is realised by a smooth
4-manifold.

By studying a finite-dimensional approximation to the Seiberg-Witten equations, M.
Furuta was able to prove the following.

Theorem 5.3.3 (10/8-theorem, [Fur01]). Every smooth 4-manifold X with even inter-
section form satisfies the following inequality

b2(X) ≥ 10

8
|τ(X)|+ 2. (5.3.7)

Equivalently, Furuta’s 10/8 theorem states that n ≥ 2k + 1. Hence for X to be
smoothable, we need at least 2 copies of H for every pair of E8 in QX .

In summary, suppose we have the following intersection form

Q = ⊕nH ⊕2k E8. (5.3.8)

Then

• If n ≤ 2k, then Q is not realisable by a smooth 4-manifold.

• If n ≥ 3, then Q is realised by the smooth 4-manifold #n−3kH#kK3.

• If 2k < n < 3k, then it is unknown whether Q is realised by a smooth 4-manifold.
However, it is conjectured that Q is not realised by a smooth 4-manifold.



Appendix A

Differential Geometry

In this appendix we present some basic results and constructions from differential
geometry needed in this thesis.

A.1 Principal Bundles

We recall the basic theory of principal G-bundles needed for this thesis. A proof of the
stated theorems can be found in [Ham17]. Throughout this section, G is a Lie group.

Definition A.1.1. A principal G-bundle P over X is a smooth submersion π : P →
X onto a smooth manifold X, and a smooth right action P ×G→ P such that:

(i) The action of G preserves the fibers of π, and acts freely and transitively on them.

(ii) For any x ∈ X, there is a neighbourhood U ⊂ X of x and a fiber-preserving,
G-equivariant diffeomorphism φU : π−1(U)→ U ×G. Where G acts on U ×G by
(x, h)g = (x, gh).

Note that the second condition is equivalent to the commutative diagram

π−1(U) U ×G

U.

φU

π pr1

Given two principal G-bundles πX : P → X and πY : P → Y , and a smooth map
f : X → Y , we say that a G-equivariant map ϕ : P → P is a bundle map covering f
is the following diagram commutes:
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P P ′

X Y.

ϕ

πX πY

f

If X = Y , and f is a diffeomorphism, then a bundle map is called a bundle morphism.
If a bundle map ϕ : P → P ′ is invertible, and its inverse ϕ−1 : P ′ → P is a bundle
morhpism, then ϕ is called a bundle isomorphism.

A principal G-bundle is trivial if it is isomorphic to a the product bundle X ×G→ X.
By definition, every principal G-bundle is locally trivial.

Let ϕ : P → P be a bundle isomorphism. Then ϕ is called a bundle automorphism.
The set of bundle automorphisms forms a group under composition of function called the
group of automorphisms of P . We denote by Aut(P ) the group of bundle automorphisms.

Definition A.1.2. Let π : P → X be a principal G bundle. The subgroup G(P ) of all
bundle automorphisms which cover the identity map is called the gauge group of P .

We denote by Ad(G) the space G with the right adjoint action x · g = g−1xg for all
x, g ∈ G. Further, if X and Y are spaces with a G-action, then we denote by C∞G (X,Y )
the space of smooth G-equivariant maps from X to Y .

Proposition A.1.3. We have the following isomorphism of groups G(P ) ∼= C∞G (P,Ad(G)),
where the group structure on C∞G (P,Ad(G)) is given by pointwise multiplication.

Proof. Suppose f ∈ G(P ). Since f(p) is in the same fiber as p, there exists a unique
σf (p) ∈ G such that

f(p) = pσf (p). (A.1.1)

We claim that the map f 7→ σf defined by (A.1.1) is the desired isomorphism.

As f is smooth, it follows that σf is smooth, and by the G-equivariance of f

(pg)σf (pg) = f(pg) = f(p)g (A.1.2)

which implies that
gσf (pg) = σf (p)g. (A.1.3)

Hence σf (pg) = g−1σ(p)g, and so σf ∈ C∞G (P,Ad(G)). The inverse of the map f 7→ σf
is given by σ 7→ fσ, where fσ is defined by

fσ(p) = pσ(p). (A.1.4)

As fσ(p) is in the same fiber as p, it is a bundle map. It is clear that f−1σ = fσ−1 , and

fσ(pg) = pgσ(pg) = pgg−1σ(p)g = pσ(p)g = fσ(p)g. (A.1.5)
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Hence f is a diffeomorphism, and f ∈ G(P ).

To see that f 7→ σf is a group homomorphism, we have

(f ′ ◦ f)(p) = f ′(pσf (p)) = f ′(p)σf (p) = pσf ′(p)σf (p) = p(σf ′σf )(p). (A.1.6)

Therefore σf ′◦f = σf ′σf .

Corollary A.1.3.1. If G is abelian, then G(P ) ∼= C∞(X,G).

Proof. Let σ ∈ C∞G (P,Ad(G)). Then as G is abelian

σ(pg) = g−1σ(p)g = g−1gσ(p) = σ(p), (A.1.7)

and σ is constant on the orbits. Thus, σ descends to a unique smooth map σ̃ defined
on P/G = X. Therefore σ̃ ∈ C∞(X,G).

As is the case with vector bundles, it is possible to give a local description of a principal
G-bundle. Consider a local trivialisation {Uα}α∈A for a principal G-bundle π : P → X.
If the intersection Uαβ = Uα∩Uβ is non-empty, there are two trivialisations on π−1(Uαβ)
given by φα and φβ. The composition

φα ◦ φ−1β : Uαβ ×G→ Uαβ ×G, (A.1.8)

is fiber-preserving and G-equivariant. Therefore for (x, h) ∈ Uαβ ×G, we have

(φα ◦ φ−1β )(x, h) = (x, gαβ(x)h), (A.1.9)

for some smooth maps gαβ : Uα∩Uβ → G. The map gαβ is called a transition function
for the principal G-bundle P .

Just like the situation for vector bundles, the transition functions satisfy the cocycle
condition.

Lemma A.1.4. Given a trivialisation {Uα}α∈A for a princpal G-bundle P . Then the
transition functions satisfy

gαα = Id, gαβgβα = Id, gαβgβγgγα = Id, (A.1.10)

whenever the equations are defined.
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In fact, the transition functions are sufficient to describe a principal G-bundle. Let
{Uα}α∈A be a trivialisation for X with transition functions {gαβ} which satisfy the
cocycle condition. For each Uα ⊂ X, define the equivalence relation between elements
(x, h) ∈ Uα ×G and (x′, h′) ∈ Uβ ×G by

(x, h) ∼ (x′, h′), if, and only if, x = x′, and h′ = gβα(x)h (A.1.11)

Then the disjoint union of quotient spaces

P =
∐
α∈A

(Uα ×G)/ ∼, (A.1.12)

defines a principal G-bundle.

Hence given a vector bundle E we can use the transitions functions to create a principal
G-bundle. A canonical example is the construction of the Frame bundle Fr(TX) on a
Riemannian manifold. Moreover, we can reverse the construction to generate a vector
bundle from a principal G-bundle.

Definition A.1.5. Suppose π : P → X is a principal G-bundle and ρ : G→ GL(V ) is
a representation of G into a finite-dimensional vector space V . The associated bundle
E = P ×ρ V is the quotient of P × V by the equivalence relation

(p, v) ∼ (pg, ρ(g)−1v), (A.1.13)

for all g ∈ G and (p, v) ∈ P × V .

It follows that the associated bundle E = P ×ρ V is a vector bundle with fiber V .

A.2 Connections

In this section we provide a review of connections on principal G-bundles and vector
bundles. A proof the stated assertions can be found in any differential geometry book,
for example [Ham17] or [Tau11].

Definition A.2.1. A connection ∇ on a vector bundle E → X is a linear map

∇ : Ω0(X,E)→ Ω1(X,E), (A.2.1)

which satisfies the Leibniz rule

∇(fs) = df ⊗ s+ f∇s. (A.2.2)



A.2. CONNECTIONS 67

Given a connection ∇, and a vector field Y ∈ X(X), we form the covariant derivative
∇X : Γ(E) → Γ(E), which is denoted by ∇X . It is C∞(X)-linear with respect to Y ,
and linear with respect to s ∈ Γ(E). The covariant derivative satisfies the associated
Leibniz rule

∇X(fs) = (Xf)s+ f∇Xs. (A.2.3)

Note that, by a partition of unity, connections always exist on vector bundles.

Suppose now that ∇ and ∇′ are two connections on E. Then the Leibniz rule gives

(∇−∇′)(fs) = df ⊗ s+ f∇s− df ⊗ s− f∇′s
= f(∇−∇′)s,

(A.2.4)

which shows that difference is C∞(X)-linear. Therefore ∇−∇′ is defined pointwise,
and so is an End(E)-valued 1-form.

Thus, given a connection ∇ on E, any other connection ∇′ is given by ∇′ = ∇+ a for
some a ∈ Ω1(X,End(E)). This implies that the space of all connections on E is an
affine space over Ω1(X,End(E)).

From this, there is a local description of a connection. Suppose {Uα}α∈A is a trivialising
cover for E, with transition functions gαβ : Uα ∩ Uβ → GL(V ). A connection is then a
collection of matrices {ωα}α∈A of E-valued 1-forms on Uα. Given a section s ∈ Γ(E),

(∇s)α = dsα + ωαsα, (A.2.5)

and the matrices ωα transform on double overlaps by

ωα = g−1βαωβgβα + g−1βαdgβα. (A.2.6)

Therefore, we identify a connection ∇ with its connection matrices {ωα}α∈A.

We may also extend a connection ∇ to a map on ∇ : Ωk(X,E)→ Ωk+1(X,E) by setting

∇(αs) = dα⊗ s+ (−1)kα ∧∇s, (A.2.7)

for α ∈ Ωk(X) and s ∈ Γ(E).

The curvature of a connection ∇ is the map

F∇ = ∇ ◦∇ : Ω0(X,E)→ Ω2(X,E). (A.2.8)

The curvature is C∞(X)-linear, and therefore defines a End(E)-valued 2-form. We also
provide a local description of the curvature. Let {Uα}α∈A be the same trivialisation as
above. The curvature is a collection of curvature matrices Ω = {Ωα}α∈A given by

(Ωs)α = (dωα + ωα ∧ ωα)sα, (A.2.9)
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for a section s ∈ Γ(E). The curvature matrices transform on double overlaps according
to the rule

Ωα = g−1βαΩβgβα. (A.2.10)

It will also be useful to relate the curvature of two different connections. This is done
in the following lemma.

Lemma A.2.2. Given a connection ∇ and a 1-form a ∈ Ω1(X,End(E)), then

F∇+a = F∇ + da+ a ∧ a. (A.2.11)

We now briefly discuss connections on a principal G-bundle. Suppose π : P → X is a
principal G-bundle. Then the differential dπ : TP → TX gives rise to a distribution
ker(dπ) ⊂ TP called the vertical distribution, whose fibers are ker(dπp). The vertical
distribution fits into the (pointwise) exact sequence

0 ker(dπp) TpP Tπ(p)X 0.

Definition A.2.3. A (Ehresmann) connection on a principal G-bundle π : P → X
is a distribution H such that

(i) ker(dπp)⊕Hp = TpP , for all p ∈ P .

(ii) H is right invariant under the action of G. i.e. if rg denotes right multiplication
in P by g ∈ G, then drg(Hp) = Hpg.

A distribution which satisfies condition (i) of Definition A.2.3 is called a horizontal
distribution. Thus a Ehresmann connection is a right invariant horizontal connection.

Let A ∈ g, the Lie algebra of G. For p ∈ P , we define

Ãp =
d

dt

∣∣∣∣
t=0

petA ∈ TpP. (A.2.12)

The fundamental vector field associated to A is the vector field Ã defined by
(Ã)p = Ãp. Note that Ã ∈ ker(dπ).

Definition A.2.4. A connection 1-form, or connection, on a principal G-bundle
π : P → X is a g-valued 1-form ω ∈ Ω1(X, g) such that

(i) drg(ω) = (Ad g−1)ω, where Ad g−1 is the differential of conjugation by g−1 ∈ G.

(ii) ω(Ã) = A, for all A ∈ g.

It turns out that a connection and Ehresmann connection are equivalent objects.
Explicitly
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Theorem A.2.5. Let π : P → X be a principal G-bundle.

(I) Let H be a Ehresmann connection on P . Then

ωp(Ãp +Bp) = Ap, (A.2.13)

for all p ∈ P , Bp ∈ Hp, and Ap ∈ g defines a connection 1-form ω.

(II) Let ω ∈ Ω1(P, g) be a connection 1-form. Then

Hp = kerωp (A.2.14)

is an Ehresmann connection on P .

A.3 Hodge Theory

In this section we introduce the Hodge star operator on Ω•(X).

Let X be a compact, oriented, Riemannian 4-manifold. Suppose (e1, e2, e3, e4) is a
positively oriented local orthonormal frame for TX, and let θ1, θ2, θ3, θ4 be dual coframe.

Define the Hodge star operator

∗ :
∧k

T ∗X →
∧4−k

T ∗X, (A.3.1)

by
∗ (θi1 ∧ · · · ∧ θik) = θj1 ∧ · · · ∧ θj4−k , (A.3.2)

such that θi1 , . . . , θik , θj1 , . . . , θj4−k) is a positively oriented frame; then extending linearly.
For example,

∗ 1 = θ1 ∧ θ2 ∧ θ3 ∧ θ4, ∗(θ1 ∧ θ2) = θ3 ∧ θ4. (A.3.3)

From the properties of the wedge product

∗ (Aθ1 ∧ · · · ∧ θk) = (detA) ∗ (θ1 ∧ · · · ∧ θk). (A.3.4)

Hence, ∗ is invariant under orthogonal transformations.

Lemma A.3.1. ∗2 = (−1)k(4−k) = (−1)k :
∧k T ∗X →

∧k T ∗X. Moreover, we have
∗−1 = (−1)k∗.

Proof. It is clear that ∗2 maps
∧k T ∗X to itself. Suppose that

∗ (θi1 ∧ · · · ∧ θik) = θj1 ∧ · · · ∧ θj4−k , (A.3.5)
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then
∗2 (θi1 ∧ · · · ∧ θik) = ±θi1 ∧ · · · ∧ θik , (A.3.6)

depending on whether θi1 ∧ · · · ∧ θik positively or negatively oriented. However,

θi1 ∧ · · · ∧ θik∧θj1 ∧ · · · ∧ θj4−k

= (−1)k(4−k)θj1 ∧ · · · ∧ θj4−k ∧ θi1 ∧ · · · ∧ θik
(A.3.7)

which implies that ∗2 = (−1)k(4−k) = (−1)−k
2

= (−1)k.

One of the main reason’s for considering the ∗ operator, is that it allows us define
another inner product on Ωk(X). For α, β ∈ Ωk(X), we define

(α, β) =

∫
X
α ∧ ∗β. (A.3.8)

It follows that ( , ) defines a symmetric, positive-definite, bilinear form on Ωk(X), and
hence is an inner product. (For a proof see [Wel08].) The ∗ operator further allows us
to define a formal adjoint to the exterior derivative, with respect to the inner product
( , ).

Definition A.3.2. The codifferential d∗ = Ωk+1(X)→ Ωk(X) is defined by

d∗ = − ∗ d ∗ . (A.3.9)

Proposition A.3.3. The codifferential is the (formal) adjoint to the exterior derivative,
with respect to ( , ). i.e. for α ∈ Ωk(X), and β ∈ Ωk+1(X) we have

(dα, β) = (α, d∗β). (A.3.10)

Proof. A direct calculation gives

(dα, β) =

∫
X
dα ∧ ∗β

=

∫
X

(
d(α ∧ ∗β)− (−1)kα ∧ d(∗β)

)
=

∫
X
d(α ∧ ∗β)−

∫
X

(−1)kα ∧ (−1)k ∗ ∗d(∗β)

=

∫
X
d(α ∧ ∗β) +

∫
X
α ∧ ∗(− ∗ d∗)β

=

∫
X
d(α ∧ ∗β) + (α, d∗β).

(A.3.11)
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However, by Stokes’ theorem,∫
X
d(α ∧ ∗β) =

∫
∂X

α ∧ ∗β = 0. (A.3.12)

As ∗2 = 1 on
∧2 T ∗X, we can decompose

∧2 T ∗X into the (±1)-eigenspaces of ∗. i.e.∧2
T ∗X =

∧2

+
T ∗X ⊕

∧2

−
T ∗X, (A.3.13)

where ∧2

+
T ∗X = {ω ∈

∧2
T ∗X : ∗ω = ω}∧2

−
T ∗X = {ω ∈

∧2
T ∗X : ∗ω = −ω}.

(A.3.14)

As a vector space, a basis for
∧2

+ T
∗X is given by

θ1 ∧ θ2 + θ3 ∧ θ4, θ1 ∧ θ3 − θ2 ∧ θ4, θ1 ∧ θ4 + θ2 ∧ θ3, (A.3.15)

while a basis for
∧2
− T
∗X is

θ1 ∧ θ2 − θ3 ∧ θ4, θ1 ∧ θ3 + θ2 ∧ θ4, θ1 ∧ θ4 − θ2 ∧ θ3. (A.3.16)

Elements in Ω2
+ = Γ(

∧2
+ T
∗X) and Ω2

−(X) = Γ(
∧2
− T
∗X) are called self-dual and

anti-self-dual 2-forms, respectively.

Let ω ∈ Ω2(X), then there is a decomposition

ω = ω+ + ω− ∈ Ω2
+(X)⊕ Ω2

−(X), (A.3.17)

where

ω+ = P+(ω) =
1

2
(ω + ∗ω), ω− = P−(ω) =

1

2
(ω − ∗ω). (A.3.18)

Define the operator d+ = P+ ◦ d : Ω1(X)→ Ω2
+(X). Then d+ fits into the complex

0 Ω0(X) Ω1(X) Ω2
+(X) 0.d d+ (A.3.19)

Proposition A.3.4. ker d = ker d+.
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Proof. It is clear that ker d ⊆ ker d+. Now let ω ∈ Ω1(X), then

2d∗d+ω = d∗(dω + ∗dω)

= d∗dω + d∗(∗dω)

= d∗dω − ∗d ∗ (∗dω),

= d∗dω − (−1)2 ∗ d2ω,
= d∗dω.

(A.3.20)

Thus, 2d∗d+ = d∗d, and so if d+ω = 0 then d∗dω = 0. Hence

0 = (d∗dω, ω) = (dω, dω), (A.3.21)

and dω = 0.
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