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Research Summary

Differential Geometry is the study of geometric figures using the methods of Calculus. This means
we apply methods like differentiation and integration on geometric figures in hope of learning their
properties. We can view geometric figures in two ways; they can be imagined as being embedded in
Rn or simply considering a geometric figure as a topological space by itself. In this report, we focus
on the view in which geometric figures are embedded in Rn. This field of study is called Riemannian
Geometry. In particular, we study their properties by embedding them in R3. The downside of
studying geometric figures by embedding them in R3, or even in Rn, is that we need to prove that
certain things are invariant under different embeddings. However, embedding a geometric figure in
R3 gives us a lot of structure to work with, and this makes analysing them not very different from
the classical analysis of functions in R3. This report explores many different properties of smooth
surfaces, which are special types of geometric figures, by using multi-variable Calculus.

Abstract

In this report, we mainly explore the properties of smooth surfaces in R3. We develop an intuitive and
mathematical understanding of the first and second fundamental form. We acquire an understanding
of the Normal, Geodesic, and Gaussian curvature through mathematical formulation and examples.
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1 Introduction

In this section, we will introduce some of the basic definitions of curves and surfaces.

1.1 Curves

Intuitively, a curve can be thought as the trace of a moving particle in the space. Mathematically, a
curves is defined to be the image of a function, γ : U → Rn, where U ⊂ R.

Definition 1 (Parametrised curve). A parametrised curve in Rn is a smooth function γ : U → Rn,
where U ⊂ R.

Throughout, this report we will assume that smoothness means C∞, i.e. the function is differen-
tiable infinitely many times.

Definition 2 (Regular curve). Let γ : U → Rn be a curve. It is called regular if its derivative is
non-vanishing, i.e. ‖γ′(t)‖ 6= 0, ∀ ∈ U .

There are many different ways to parametrise a curve, e.g. γ(t) = (t, t2) and γ̃(t) = (t2, t4)
describes the same curve for t ≥ 0. However, only one of these curve is regular, which is γ(t).
Moreover, there are many different ways to parametrise a curve such that all the parametrisations are
regular.

Definition 3 (Unit speed curve). Let γ : U → Rn be a curve. It is called unit-speed, if ‖γ′(t)‖ = 1,
∀ ∈ U .

We will see later on that a lot of the formulas and results relating to curves take on a much simpler
form when the curve is unit-speed, e.g. curvature of a unit-speed curve, see definition 4, is just the
norm of its second derivative.

Proposition 1. A parametrised curve is unit-speed if and only if it is regular.

Definition 4 (Curvature of a curve). Let γ : U → Rn be a unit-speed curve. The curvature at point
γ(t) is defined as

κ(t) = ‖γ′′‖

These are all the definitions and results about curves that we need to know to understand this
report.
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1.2 Surfaces

Intuitively, a surface is a subset of R3 that looks like R2 in the neighbourhood of any given point, e.g.
the surface of the Earth is spherical; however, it appear to be a flat plane(R2) to an observer on the
surface.

Definition 5 (Diffeomorphism). If f : U →W is continuous, bijective, and smooth, and if its inverse
maps f−1 : W → U is also continuous and smooth, then f is called a diffeomorphism, and U and W
are called diffeomorphic.

Definition 6 (Smooth Surface). A subset of R3 is a smooth surface, if for every point p ∈ S, there
exists a open set U in R2 and an open set W in R3 containing the point p such that there exists a
smooth function σ(u, v) : U ⊂ R2 →W ∩ S and σu × σv 6= 0.

Therefore, a surface is a collection of such functions, σ : U → S∩W , which we call smooth surface
patches.

Definition 7 (Reparametrisation of Surface Patches). Let σ : U → S and σ̃ : Ũ → S be surface
patches for a surface S, then σ̃ is called a reparametrisation of σ if there exists a map, Φ : Ũ → U ,
which is smooth and bijective with smooth inverse, Φ−1 : U → Ũ .

Definition 8 (Tangent space). Let S be a smooth surface. The tangent plane of S at the point
p ∈ S is the set of all initial velocity vectors of regular curves in S with initial position p, i.e

TpS = {γ′(0)|γ is a regular curve in S with γ(0) = p}

These are all the definitions about surfaces that we need to understand this report.

2 First Fundamental Form

In this section, we will develop on the definitions we discussed in the last section. We will define one
of the most essential objects that lets us compute lengths, angles, and areas on a surface. It is called
the first fundamental form.

Definition 9 (Fist Fundamental Form). The first fundamental form is the restriction of the inner
product of the ambient space(R3) to the tangent space(TpS) at point p ∈ S. The first fundamental
form is denoted by I,

I(x, y) = 〈x, y〉

where x, y ∈ TpS.

2.1 First Fundamental Form in Local Coordinates

We will now discuss the classical notation for expressing the first fundamental form in local coordinates.
Suppose σ(u, v) : U → S is a surface patch and x, y ∈ TpS, where TpS is the tangent plane at point
p on S. Let σ(u0, v0) = p and fu = σu |u0 and fu = σv |v0 . Then, we can write x = fua + fvb and
y = fuc+ fvd. This implies the following:

I(x, y) = I(fua+ fvb, fuc+ fvd)

= 〈fua+ fvb, fuc+ fvd〉
= ac 〈fu+, fu〉+ (ad+ bc) 〈fu, fv〉+ bd 〈fv, fv〉
= acE + (ad+ bc)F + bdG

(1)

where

E = ‖fu‖2 , F = ‖fufv‖ , G = ‖fv‖2 (2)
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Definition 10 (First Fundamental Form in Local Coordinates). The first fundamental form in local
coordinates(u, v) is the expression F1 = Edu2 + 2Fdudv +Gdv2.

Now, a good question to ask would be, how reparametrisation of a surface affects the first funda-
mental form of the surface in terms of the local coordinates?

Example 1. Let S be a surface. Suppose σ̃ : Ũ → S is a reparametrisation of σ : U → S, where σ is
a surface patch of S and U, Ũ ⊂ R2. Assume that Φ : Ũ → U is a smooth map and the following are
the first fundamental form of σ̃ and σ, respectively:

Ẽdũ2 + 2F̃ dũdṽ +Gdṽ2 and Edu2 + 2Fdudv +Gdv2

Then,

(
Ẽ F̃

F̃ G̃

)
= J(Φ)t

(
E F
F G

)
J(Φ) (3)

where J(Φ) is the Jacobian of Φ, i.e.

J(Φ) =

(
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

)
Proof. We know that σ̃(ũ, ṽ) = σ(Φ(ũ, ṽ)) = σ(u, v) and Ẽ = ‖σ̃ũ‖2 , and E = ‖σu‖2.
Then,

Ẽ = ‖σ̃ũ‖2

= ‖(σ ◦ Φ)ũ‖2

=

(
σu
∂u

∂ũ
+ σv

∂v

∂ũ

)2

= σ2
u

∂u

∂ũ

2

+ 2σuσv
∂u

∂ũ

∂v

∂ũ
+ σ2

v

∂v

∂ũ

2

= E
∂u

∂ũ

2

+ 2F
∂u

∂ũ

∂v

∂ũ
+G

∂v

∂ũ

2

Similarly,

G̃ = σ2
u

∂u

∂ṽ

2

+ 2σuσv
∂u

∂ṽ

∂v

∂ṽ
+ σ2

v

∂v

∂ṽ

2

= E
∂u

∂ṽ

2

+ 2F
∂u

∂ṽ

∂v

∂ṽ
+G

∂v

∂ṽ

2

F̃ = σ2
u

∂u

∂ũ

∂u

∂ṽ
+ σuσv

∂u

∂ũ

∂v

∂ṽ
+ σvσu

∂v

∂ũ

∂u

∂ṽ
+ σ2

v

∂v

∂ũ

∂v

∂ṽ

= E
∂u

∂ũ

∂u

∂ṽ
+ F

∂u

∂ũ

∂v

∂ṽ
+ F

∂v

∂ũ

∂u

∂ṽ
+G

∂v

∂ũ

∂v

∂ṽ

Therefore, if we write this in a matrix form we would get equation 3.
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2.2 Length, Angle, and Area

You may be wondering how do we calculate lengths, angles, and areas on the surface, as we claimed
before. To calculate the length, let γ : X → S be a curve on the surface, where X ⊂ R. Then,

l =

∫ t1

t0

‖γ(t)‖ dt

l is the length of the γ from t0 to t1, where t0, t1 ∈ X. To calculate the angle between two tangent
vectors, we can use the definition of inner product, i.e. 〈x, y〉 = cos(θ) ‖x‖ ‖y‖, where θ is the angle
between the tangent vectors. Therefore,

θ = cos−1
(
〈x, y〉
‖x‖ ‖y‖

)
To calculate the area, we first need to represent the norm of the cross product of σu and σv in terms
of the first fundamental form, where u and v are local coordinates.

‖σu × σv‖ =

√
|σu|2 |σv|2 − 〈σu, σv〉

=
√
EG− F 2

Therefore, the area of the region σ(U), where U ⊂ R2, is :

Area(U) =

∫∫
U

‖σu × σv‖ dA

=

∫∫
U

√
EG− F 2dA

3 Second Fundamental Form

In this section, we will learn about the Gauss map, the intuition behind the second fundamental form,
normal curvature, and geodesic curvature. We will also discuss the mathematical formulas for these
concepts.

Definition 11 (Gauss Map). The Gauss Map on a surface S is just a smooth map defined on the
surface S to S2, i.e. N : S → S2, where S2 is the contour of a unit sphere.

In other words, the Gauss map is just a unit normal vector field N, where we imagine the output
vectors drawn from the origin.
For p ∈ S, consider the derivative dNp : TpS → TN(p)S. We notice that the domain and codomain of
the derivative are the same subspace of R3 because N(p) is normal to the surface S and S2; therefore,
dNp : TpS → TpS. To make the notation easier to understand we will denote N ◦ σ as N , whenever
this does not cause confusion.

Definition 12 (Orientabile). A surface is called orientable if we can make a consistent choice of
surface normal vector at every point on the surface. In other words, if we can define a Gauss map on
the entire surface then it is orientable.

Definition 13 (Weingarten Map). Let S be an orientable surface and N be the Gauss map on S.
Then, for every point p ∈ S the linear transformation

Wp = −dNp : TpS → TpS

is called the Weingarten map of S at p.

5



The negative sign in the definition of Weingarten map may seen weird at first; however, it will
become clear when we talk about the normal curvature. It can be shown that the Weingarten map
can be represent as a diagonal matrix with a change in basis; however, we will not prove this here.

There is an ambiguity in the unit normal map as their are two possible choices. To make it
unambiguous we usually take the unit normal at point p ∈ S to be N(p) = σu×σv

‖σu×σv‖ for a surface

patch σ.

3.1 Normal and Geodesic Curvature

We will now discuss about the normal and geodesic curvature. Intuitively, Normal curvature measures
how quickly the surface is bending away from the tangent plane at a point on the surface in a given
direction. Mathematically, we define it as follows:

Definition 14 (Normal Curvature). Let S be an orientable surface, p ∈ S. Suppose γ : X ⊂ R2 → S
is a unit speed curve, γ(0) = p and γ′(0) = v. Then, the normal curvature (κn) = 〈y′′(0), N(p)〉.

We can intuitively see that κn measures how fast a curve is curving at point p away from the
tangent plane TpS, see figure 1. It turns out that there is another equivalent definition of the normal
curvature. It can be seen by the following calculation:

0 = 〈γ′(t), N(γ(t))〉

=⇒ d

dt

∣∣
t=0

0 =
d

dt

∣∣
t=0
〈γ′(t), N(γ(t))〉 = 〈γ′′(0), N(p)〉+ 〈v, dNp(v)〉

=⇒ −〈v, dNp(v)〉 = 〈γ′′(0), N(p)〉
=⇒ 〈v,Wp(v)〉 = 〈γ′′(0), N(p)〉

(4)

Due to the above result, we define the Weingarten map the way we did (it also reduces a lot of
negative signs in certain cases when we do calculations).
We will now discuss about the geodesic curvature. Intuitively, it measures how quickly a surface
is bending away from the plane T̃pS at point p, where T̃pS = p + span{ v, N(p)}. To see this, we
decompose the acceleration, i.e. the second derivative, of γ as follows:

a = κn ·N(p) + κg ·R90(v)

for some kg ∈ R, which we call this the geodesic curvature of γ at p, see figure 1. Here, R90 : TpS → TpS
denotes the rotation of 90 degrees of the tangent plane in the anticlockwise direction with respect to
the orientation of the surface.

Definition 15 (Second Fundamental Form). The quadratic form associated with the Weingarten
map is called the second fundamental form of S at p, and is denoted by the IIp, i.e.

IIp = 〈Wp(v), v〉 = 〈−dNp(v), v〉

3.2 The Second Fundamental Form in Local Coordinates

We will now talk about the second fundamental form in local coordinates as we did with the first
fundamental form. Let σ : U ⊂ R2 → S be a regular surface patch of S, where S is a smooth surface,
then we define the functions L, M , and N as follows:

L = 〈σuu, N〉 = 〈Nu, σu〉 = 〈W (σu), σu〉
M = 〈σuv, N〉 = −〈Nv, σu〉 = −〈Nu, σv〉 = 〈W (σu), σv〉
N = 〈σvv, N〉 = 〈Nv, σv〉 = 〈W (σv), σv〉

(5)
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Figure 1: The normal and geodesic curvature of γ at p

These equations are generated using a similar method to what we did in equation 4. Note that
we have suppressed the input variables for brevity. For example, the red term really means that
L(q) = 〈Wp(σu(q)), σu(q)〉, where p = σ(q) and q ∈ U ⊂ R2. Furthermore, we can represent the
second fundamental form in terms of L,M, and N as follows:
Suppose v ∈ TpS and p ∈ S then,

IIp(v) = IIp(aσu + bσ) = 〈Wp(aσu + bσ), aσu + bσ〉
= a2 〈Wp(σu), σu〉+ 2ab 〈Wp(σu), σv〉+ b2 〈Wp(σv), σv〉
= a2L+ 2abM + b2N

This relation motivates the following definition.

Definition 16 (The Second Fundamental Form in Local Coordinates). The second fundamental form
in local coordinates {u,v} is the expression

F2 = Ldu2 + 2Mdudv +Ndv2

As we did in the section 2.1 , again a good question to ask would be, how reparametrisation of a
surface affects the second fundamental form of a surface in terms of the local coordinates?

Example 2. Let a surface patch σ̃(ũ, ṽ) be a reparametrisation of a surface patch σ(u, v). Assume
that Φ : U → Ũ is a smooth reparametrisation map, then(

L̃ M̃

M̃ Ñ

)
= ±J(Φ)t

(
L M
M N

)
J(Φ) (6)

Proof. You would have noticed that the claim here is very similar to the claim in Example 1 and so
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is the proof. We know

σ̃ũ = σu
∂u

∂ũ
+ σv

∂v

∂ũ

∴ σ̃ũũ = (σu
∂u

∂ũ
+ σv

∂v

∂ũ
)ũ

= (σu
∂u

∂ũ
+ σv

∂v

∂ũ
)u
∂u

∂ũ
+ (σu

∂u

∂ũ
+ σv

∂v

∂ũ
)v
∂v

∂ũ

= σuu

(
∂u

∂ũ

)2

+ σuv
∂v

∂ũ

∂u

∂ũ
+ σu

∂2u

∂ũ2
+ σvu

∂u

∂ũ

∂v

∂ũ
+ σvv

∂2v

∂ũ2
+ σv

∂2v

∂ũ2

∴ L̃ = det(J(Φ))

(
L

(
∂u

∂ũ

)2

+ 2M
∂v

∂ũ

∂u

∂ũ
+N

(
∂v

∂ũ

)2
)

This is because N · σu = N · σv = 0. Similarly, we can calculate M̃ and Ñ in terms of N,M, and N .
Then as in example 1 if we represent it in terms of matrices, then we will get the desired result.

4 Gaussian Curvature

In this section, we will define two more quantities that measures the curvature of a surface, namely
the Gaussian and mean curvature. Gaussian and mean curvature are dependent on the the following
definition:

Definition 17 (Principal Curvatures). The principal curvatures of a surface S at point p are the
maximum (κ1) and minimum (κ2) curvature. The directions in which these max κ1 and min κ2
curvature occur are called the principal directions.
Alternatively, the max and min curvature are the eigenvalues of the Weingarten map Wp at point
p ∈ S and the principal direction associated with them are the eigenvectors.

Using the above definition, we can represent the Weingarten map as a diagonal matrix with a
change of basis. Suppose v ∈ TpS, where |v| = 1, and let { e1, e2 } be an orthonormal basis of TpS.
Then, we can represent v in terms of the basis vectors, i.e. v = e1cos(θ) + e2sin(θ), where θ is the
angle between v and e1.

IIp(v) = 〈Wp(v), v〉
= 〈Wp(e1cos(θ) + e2sin(θ)), e1cos(θ) + e2sin(θ)〉
= 〈e1κ1cos(θ) + e2κ2sin(θ), e1cos(θ) + e2sin(θ)〉
= κ1cos(θ)2 + κ2sin(θ)2

Therefore, if we represent the Weingarten map with respect to the above orthonormal basis then
Weingarten map would be:

Wp =

(
κ1 0
0 κ2

)
(7)

Definition 18 (Gaussian and Mean Curvature). Suppose S is a regular surface. Let Wp : TpS → TpS
be the Weingarten map at point p ∈ S. Then, the Gaussian Curvature (K) is the determinant of the
Weingarten map and the mean curvature (H) is half of the trace.
Alternatively, the Gaussian curvature is also equal to the determinant of the differential dNp : TpS →
TpS and the mean curvature is also equal to the negative half of the trace of dNp. This is because the
Weingarten map is the same map as the differential −dNp with a change of basis.

We can use equation 7 to write the Gaussian and mean curvature in the following way:

K = det(W ) = κ1κ2 H =
1

2
trace(W ) =

κ1 + κ2
2
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4.1 Gaussian Curvature in Local Coordinates

We will now define Gaussian curvature with respect to the local coordinates using the following
proposition:

Proposition 2. Let

(
w11 w21

w21 w22

)
be the matrix that represent the Weingarten map ( Wp ) at point

p ∈ S with respect to the basis vectors {σu, σv} of TpS, where σ : U → S is a surface patch. Then,(
w11 w21

w21 w22

)
=

1

EG− F 2

(
LG−MF MG−NF
ME − LF NE −MF

)
(8)

Proof. Using equation 5 we get the following:

L = 〈Wp(σu), σu〉 = 〈w11σu + w21σv, σu〉 = w11E + w21F

M = 〈Wp(σu), σv〉 = 〈w11σu + w21σv, σv〉 = w11E + w21G

M = 〈Wp(σv), σu〉 = 〈w12σu + w22σv, σu〉 = w21E + w22F

N = 〈Wp(σv), σv〉 = 〈w12σu + w22σv, σv〉 = w21F + w22G

If we represent these equations in a matrix format we get the following:(
w11 w21

w21 w22

)
=

(
E F
F G

)−1(
L M
M N

)
It is easy to check that if we calculate the inverse then we will get equation 8.

From this we can get a formula for the Gaussian and mean curvature in terms the local coordinates.
They are as follows:

K = det(W ) = det

(
1

EG− F 2

(
LG−MF MG−NF
ME − LF NE −MF

))
=
LN −M2

EG− F 2

H = trace(W ) = trace

(
1

EG− F 2

(
LG−MF MG−NF
ME − LF NE −MF

))
=
LG− 2MF +NE

2(EG− F 2)

In order to fully understand these concepts, we will consider the following examples:

Example 3. In this example, we will calculate the Gaussian curvature for a general surface of revo-
lution. A surface of revolution is obtained by rotating a plane curve, called the profile curve, around
a straight line in the plane. Suppose γ(u) = (f(u), 0, g(u)) is a parametrisation of a profile curve in
the {x, z} plane and let σ(u, v) = (cos(v)f(u), sin(v)f(u), g(u)) be the surface obtained by rotating
the profile around the z axis. Then,

σu = (cos(v)f ′, sin(v)f ′, g′)

σv = (−sin(v)f, cos(v)f, 0)

∴ σu × σv = (−cos(v)fg′,−sin(v)fg′, f ′f)

∴ ‖σu × σv‖ =
√

(fg′)2 + (ff ′)2 =
√
f2((g′)2 + (f ′)2)

Therefore, ‖σu × σv‖ will be non-vanishing if f is never 0, this means the profile curve never intersects
the z-axis, and (g′)2 + (f ′)2 6= 0, this means the profile curve is regular. We know if a curve is regular,
then there exists a reparametrisation of this curve such that its reparametrisation is unit speed;
therefore, we might as well assume that the profile curve is unit-speed.
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To calculate the Gaussian curvature, we must first calculate the first and the second fundamental
form in terms of the local coordinates.
The first fundamental form in local coordinates:

E = 〈σu, σu〉 = ‖(cos(v)f ′, sin(v)f ′, g′)‖2 = (f ′)2 + (g′)2 = 1

F = 〈σu, σv〉 = 〈(cos(v)f ′, sin(v)f ′, g′), (−sin(v)f, cos(v)f, 0)〉 = 0

G = 〈σv, σv〉 = ‖(−sin(v)f, cos(v)f, 0)‖2 = f2

The Gaussian Map in local coordinates:

N =
σu × σv
‖σu × σv‖

=
(−cos(v)g′f,−sin(v)g′f, ff ′))

f
( because (f ′)2 + (g′)2 = 1)

= (−cos(v)g′,−sin(v)g′, f ′)

The second fundamental form in local coordinates:

σuu = (cos(v)f ′′, sin(v)f ′′, g′′)

σuv = (−sin(v)f ′, cos(v)f ′, 0)

σvv = (−cos(v)f,−sin(v)f, 0)

∴ L = 〈σuu, N〉 = g′′f ′ − f ′′g′

M = 〈σuv, N〉 = 0

N = 〈σvv, N〉 = fg′

Therefore, the Gaussian curvature equals the following:

K =
LN −M2

EG− F 2
=

(g′′f ′ − f ′′g′)(fg′)
f2

=
(g′′f ′ − f ′′g′)(g′)

f

=
−f ′′

f

This is because of the following:

(f ′)2 + (g′)2 = 1 =⇒ f ′f ′′ + g′g′′ = 0

Then,

(g′′f ′ − f ′′g′)(g′) = g′′f ′g′ − f ′′(g′)2

= −f ′′(f ′)2 − f ′′(g′)2

= −f ′′

Now, a good question to ask would be that if the Gaussian curvature is given can we find a surface
that has the given Gaussian curvature? For simplicity, we will assume that the Gaussian curvature is
constant for the entire surface; however, before we do this, we need to consider the following example:

Example 4. Show that when we apply a dilation (x, y, z)→ a(x, y, z), where a is a non-zero constant,
on a surface its Gaussian curvature gets multiplied by a−2.

Proof. Suppose S is a surface and σ : U → S is a surface patch of S. Let K be the Gaussian curvature
of S, σ̃ = aσ and let Fdu2+2Gdudv+Hdv2 be the first fundamental form and Ldu2+2Mdudv+Ndv2

10



be the second fundamental form of S.
Then the first fundamental form of σ̃ is :

Ẽ = 〈σ̃u, σ̃u〉 = 〈aσu, aσu〉 = a2 〈σu, σu〉 = a2E

F̃ = 〈σ̃u, σ̃v〉 = 〈aσu, aσv〉 = a2 〈σu, σv〉 = a2F

G̃ = 〈σ̃v, σ̃v〉 = 〈aσv, aσv〉 = a2 〈σv, σv〉 = a2G

The Normal of σ̃ is:

Ñ =
σ̃u × σ̃v
‖σ̃u × σ̃v‖

=
a2(σu × σv)
‖a2(σu × σv)‖

= N

The second fundamental form of σ̃ is:

L̃ =
〈
σ̃uu, Ñ

〉
= 〈aσuu, N〉 = aL

M̃ =
〈
σ̃uv, Ñ

〉
= 〈aσuv, N〉 = aM

Ñ =
〈
σ̃vv, Ñ

〉
= 〈aσvv, N〉 = aN

Therefore, the Gaussian curvature of the surface after dilation is:

K̃ =
L̃Ñ − M̃2

ẼG̃− F̃ 2
=
a2(LN −M2)

a4(EG− F 2)
=
K

a2

From the above example, we can tell that we only need to consider 3 cases, when the Gaussian
curvature is -1, 0, and 1. This is because we can get all the other Gaussian curvatures by just a
dilation of the surface.

Example 5. Suppose that the given Gaussian curvature is -1. Then, using the same format as in

example 3, we know that −1 = −f ′′

f , i.e. f = f ′′. Then, the general solution is f(u) = aeu + be−u,

where a, b ∈ R. For simplicity, let f(u) = eu then,

(f ′)2 + (g′)2 = 1 =⇒ g′ = ±
√

1− (f ′)2 = ±
√

1− e2u

This implies

g(u) =

∫ √
1− e2udu =

√
1− e2u − cosh−1(e−u)

The evaluation of this integral has been left as an exercise for the reader. We dropped the ± sign as
we are only looking for one possible surface. Therefore, a surface with Gaussian curvature -1 is

σ(u, v) = (cos(v)f(u), sin(v)f(u), g(u))

= (cos(v)eu, sin(v)eu,
√

1− e2u − cosh−1(e−u))

If we were to consider the general case then the general function would be the following:

σ(u, v) =

(
cos(v)(aeu + be−u), sin(v)(aeu + be−u),

∫
±
√

1− (aeu − be−u)2
)

Example 6. Suppose that the given Gaussian curvature is 0. Then, using the same format as in

example 3, we know 0 = −f ′′

f , i.e. f ′′ = 0. This implies that f(u) = au, where a ∈ R. Then,

(f ′)2 + (g′)2 = 1 =⇒ g′ = ±
√

1− (f ′)2 = ±
√

1− a2
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Therefore,

g = ±
∫ √

1− a2du = ±(
√

1− a2)u+ c

Hence,

σ(u, v) = (a cos(v)u, a sin(v)u, bu+ c)

where b = ±
√

1− a2

Example 7. Suppose the given Gaussian curvature is 1. Then, using the same formula as in example

3, we know 1 = −f ′′

f , i.e. f = −f ′′. Then, the general solution is f(u) = a sin(u) + b cos(u), where
a, b ∈ R. Then,

(f ′)2 + (g′)2 = 1 =⇒ g′ = ±
√

1− (f ′)2 = ±
√

1− (a cos(u)− b sin(u))2

This implies

g(u) = ±
∫ √

1− (a cos(u)− b sin(u))2

For simplicity, lets assume that f(u) = sin(u) and g(u) =
∫ √

1− (cos(u))2 =
∫

sin(u)du = cos(u)+c.
Therefore, a surface with Gaussian calculate 1 is

σ(u, v) = (cos(v)sin(u), sin(v)sin(u), cos(u))

which is a unit sphere. If we were to consider the general case then the general function would be the
following:

σ(u, v) =

(
cos(v)(a sin(u) + b cos(u)), sin(v)(a sin(u) + b cos(u)),±

∫ √
1− (a cos(u)− b sin(u))2

)
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