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Abstract The purpose of this report is to reproduce the proof of Riemann Mapping
Theorem. We assume the readers are familiar with the basic results in real and complex
analysis upto and including the Residue Theorem. Following the approach of Riesz and
Fejer, we define F to be a family of holomorphic injective functions, uniformly bounded
by 1 on a given domain. After showing that F is not empty by constructing a function
in F , we will use Montel’s theorem to show that there is a sequence in F that converges
locally uniformly to some holomorphic injective function in f : U → B1(0) where at z0

such that fn(z0) = 0 for all n, |fn(z0)| ≤ |f ′(z0)|. We then use Hurwitz’s theorem to
show injectivity of f and proof by contradiction to show that such f is surjective to the
unit disk.
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1 Notations

Here we list some of notation that will be used throughout this report.

If A is a set, A will denote the closure of A.

The unit disk is denoted by B1(0) = {z ∈ C : |z| < 1}.

If f : U → C is a function and A ⊂ U a set, then f(A) will denote image set of
f .

If γ : [a, b]→ C is a curve, γ∗ := γ([a, b]) is the image set of the curve.

The sequence (an)n∈N will be written (an).

The series
∑∞

n=0 an will be denoted
∑
an.

If (fn) is a sequence of functions then it’s subsequence (fnk)k∈N will be denoted (fnk) or
sometimes (f in) to mean the ith subsequence of (fn).

If [a, b] is a real interval and P = {a0...an} a partition of [a, b], we denote the ith
subinterval by ∆i := [ai−1, ai].

The annulus centred at z0 with inner radius r1, outer radius r2 is the set A(z0, r1, r2) =
{z ∈ C : r1 < |z − z0| < r2}.
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2 Basic Results

Here we state the relevant definitions and some of the basic results from real and complex
analysis for the sake of completeness. These results will be used throughout the proofs
of some of the main theorems involved in proving the Riemann Mapping Theorem.

2.1 General Cauchy Theorem

Definition 1. Let U be an open subset of C and γ1 : [a0, b0]→ U and γ2 : [a1, b1]→ U
be closed curves in U . We say γ1 is homotopic to γ2 if there exists a continuous function
φ : [0, 1]× [0, 1]→ U such that

φ(t, 0) = γ1(a0 + t(b0 − a0)) for all t ∈ [0, 1]
φ(t, 1) = γ1(a1 + t(b1 − a1)) for all t ∈ [0, 1]
φ(0, s) = φ(1, s) for all s ∈ [0, 1].

The function φ is called a homotopy from γ1 to γ2 in U. If γ1 is homotopic to a constant
curve, then γ1 is said to be null homotopic in U.

Definition 2. a simply connected set is a set in which every closed, pieces wise smooth
curve is null homotopic.

Theorem 1 (Homotopy Theorem). Let U ⊂ C be an open set and f : U → C a
holomorphic function. If γ1 and γ2 are curves in U , homotopic to each other then∫

γ1

f(z)dz =

∫
γ2

f(z)dz

.

The proof of the Homotopy Theorem is not included in this article but can be found
in page 93 of, Complex Analysis by E. M. Stein and R. Sharkarchi.

As a Corollary, we obtain the Cauchy’s theorem for simply connected sets.

Theorem 2 (Cauchy). Let S ⊂ C be an open and simply connected set, f : S → C a
holomorphic function and γ a closed piecewise smooth curve in U, then∫

γ
f(z)dz = 0

.

Theorem 3 (Morera). Suppose f is a continuous complex function in an open set U
such that ∫

∂4
f(z)dz = 0

for every closed triangle 4 ∈ U . Then f is holomorphic
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The proof of Morera’s Theorem can be found in page 224 of Real and Complex Anal-
ysis 2nd edition by W. Rudin.

Definition 3. Let 0 ≤ r1 < r2 ≤ ∞ and z0 ∈ C. Let f : A(z0, r1, r2) → C be a
holomorphic function. Suppose

∑∞
1 α−k(z − z0)−k +

∑∞
0 αk(z − z0)k is the Laurent

Series of f about z0. Then α−1 is the residue of f at z0 denoted α−1.

Theorem 4 (Residue Theorem). Let U ⊂ C be an open set and A ⊂ U . Suppose U/A is
open. Let f : U/A→ C be a holomorphic function. Suppose f has a isolated singularity
at each a ∈ A. Let γ be a closed piecewise smooth curve in U/A which is null homotopic
in U . Then

1

2πi

∫
γ
f(z)dz =

N∑
k=1

(Resakf)Indγ(ak)

.

2.2 Properties of Mobius Transformations

Mobius transformations are used to construct an example of a holomorphic injective
function bounded by 1 in a given open simply connected set. It is necessary to show
that the family of functions on U that are holomorphic, injective and bounded by 1 is
not empty, for if such family was empty, the Riemann mapping theorem is trivially false.

Definition 4. Let U → C be an open, simply connected set. The function f : U → C is
a mobius transformation if for some a, b, c, d ∈ C, f(z) = az+b

cz+d .

Proposition 1. Let U → C be an open set and a, b, c, d ∈ C such that −dc 6∈ U and

ad − bc 6= 0. If f : U → C is defined by f(z) = az+b
cz+d for all z ∈ C, then f is injective

and holomorphic in U.

Proof. Holomorphicity is trivial since the mapping z 7→ az + b and z 7→ cz + d are holo-
morphic and for all z ∈ C, cz + d 6= 0 as −dc 6∈ U .

Suppose that for some w, z ∈ C, f(z) = f(w), then we get (ad− bc)z = (ad− bc)w. By
hypothesis (ad− bc) 6= 0 so z = w. So f is injective.

2.3 Sequences of Functions

In defining a non-empty family of holomorphic, injective functions, bounded by 1, we
wish to show that such family always contains a sequence of functions converging to a
function with the same properties (such is the content of Montel’s Theorem and Weier-
strass Theorem). Here we give the sufficient conditions for the limit of a sequence to
inherit the properties of the functions in that sequence.

Definition 5. Let U ⊂ C be open, (fn)N a sequence of functions on U . The sequence
(fn)N is said to be pointwise convergent to f if for each z ∈ U , the sequence (fn(z))N
converges to f(z).
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Definition 6. Let U ⊂ C be open, and fn : U → C for each n ∈ N functions on U . The
sequence (fn)N is said to be uniformly convergent to f in U if for each ε, there exists
N ∈ N such that for each z ∈ U , for all n ∈ N with N < n we have |fn(z)− f(z)| < ε.

Definition 7. Let U ⊂ C be open, and fn : U → C for each n ∈ N functions on U . The
sequence (fn)N is said to be locally uniformly convergent to f if for each z ∈ U there
exist 0 < r such that Br(z) ⊂ U and the sequence (fn)N converges uniformly to f in
Br(z).

Theorem 5. Let [a, b] be a closed interval in R and (fn)N a sequence of integrable
functions from [a, b] to C. If (fn)N converges uniformly to f : [a, b] → C, then f is

integrable and
∫ b
a f(x)dx = limn→∞

∫ b
a fn(x)dx.

Proof. Since the integral of complex valued function f of real variables are defined in-
terms of the individual integral of the real and imaginary components of f , it is sufficient
to prove the case for the sequence of real valued functions of real variable.

Suppose (fn) is a sequence of integrable functions from the interval [a,b] to R, uni-
formly convergent to f : [a, b]→ R. Let ε be given and N ∈ N such that for all x ∈ [a, b],
N < n, we have |fn(x)− f(x)| < ε. Pick N < n and let P = {a0, ..., an} be a partition
of [a, b] such that U(P, fn)−L(P, fn) < ε. We have fn(x)− ε < f(x) < fn(x) + ε for all
x ∈ [a, b] and thus for each subinterval ∆i we have infx∈∆ifn(x) − ε < infx∈∆if(x) ≤
supx∈∆if(x) < supx∈∆ifn(x) + ε.

We Thus have 0 ≤
∫ −

f(x)dx−
∫
− f(x)dx ≤ U(P, f)−L(P, f) < U(P, fn+ε)−L(P, fn−

ε) = U(P, fn)− L(P, fn) + ε(b− a) < ε(1 + b− a).
Since 0 < ε was arbitrary,

∫ −
f(x)dx =

∫
− f(x)dx and so f is Rieman Integrable.

For each n ∈ N let εn = supx∈[a,b]|f(x)− fn(x)| then limn→∞εn = 0.

So 0 ≤ limn→∞|
∫ b
a f(x)dx−

∫ b
a fn(x)dx| < limn→∞

∫ b
a |f(x)−fn(x)|dx ≤ limn→∞

∫ b
a εndx =

limn→∞εn(b− a) = 0

Theorem 6. Let U ⊂ C be an open set, γ a closed piecewise smooth curve in U and
(fn)N a sequence of integrable functions from U to C. If (fn)N converges uniformly to

f : U → C, then f is integrable and
∫ b
a f(x)dx = limn→∞

∫ b
a fn(x)dx.

Theorem 7 (Weierstrass). Let U ⊂ C be open, and (fn)N a sequence of holomorphic
functions on U that converges locally uniformly to f : U → C then f is holomorphic.

Proof. Pick z0 ∈ U and 0 < r such that Br(z0) ⊂ U and (fn) converges uniformly to f
in Br(z0). Let γ be an arbitrary closed, piecewise smooth curve in Br(z0). We have by
the previous theorem

∫
γ f(z)dz = limn→∞

∫
γ fn(z)dz. Since γ was an arbitrary curve,

we have by Morera’s Theorem, f is holomorphic on Br(z0). Since z0 ∈ U was arbitrary,
we have that f is holomorphic on U .
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3 Montel’s Theorem

Here we present the necessary theorems required to prove Montel’s theorem.

Definition 8. Let (fn) be a sequence of complex valued functions defined on the metric
space E. We say that (fn) is pointwise bounded if for each x ∈ E the sequence (fn(x))
is bounded.

The sequence (fn) is uniformly bounded in E if there exist 0 < M such that |fn(x)| < M
for all n ∈ N and x ∈ E.

Definition 9. A family of complex functions F on the set S, subset of the metric space
X is said to be pointwise equicontinuous if for a given 0 < ε and x ∈ S, there exist
0 < δ such that for all f ∈ F , |f(x)− f(y)| < ε for all y ∈ S with |x− y| < δ.

We say F is uniformly equicontinuous if for a given 0 < ε there exist a single 0 < δ
such that for all f ∈ F and x, y ∈ S, |f(x)− f(y)| < ε if |x− y| < δ.

Lemma 1. Let X be a metric space, (fn) a pointwise bounded sequence of function
from X to C. If E is a countable subset of C then (fn) has a subsequence (fnk) that is
pointwise convergent in E.

Proof. Enumerate the countable set E by E = {x0, x1...}. Since (fn(x0)) is a bounded

sequence in C, there is a convergent subsequence which we denote by (f
(0)
n (x0)) then

we define (f
(1)
n ) to be such that (f

(1)
n (x1)) is a convergent the subsequence of (f

(0)
n (x1)).

Suppose for some k ∈ N, for all i ∈ N with i < k, (f
(i)
n ) is the subsequence of (f

(i−1)
n )

such that (f
(i)
n (xi)) is a convergent subsequence of (f i−1

n (xi)). Then we have the there

exists (f
(k+1)
n ) such that (f

(k+1)
n (xk+1)) is a convergent subsequence of (f

(k)
n (xk+1)). By

Induction, such sequence of functions exists for all k ∈ N. Define (gn) by gn(z) = fnn (z)
for all n ∈ N and z ∈ E. Then (gn) is pointwise convergent on E.

Lemma 2. Let X be a metric space. If K ∈ X is a compact set, then there exists a
countably dense subset of K.

Proof. For each q ∈ Q+ the collection of sets {Bq(z) : z ∈ K} is an open cover of K and
thus there exists a finte subcover {Bq(zq1), ..., Bq(z

q
nq)}. Since the set of rational numbers

are countable and the countable union of finite sets are again countable, we have that
the set U =

⋃
q∈Q+{zq1, ..., z

q
nq} is a countable subset of K.

To show that U is dense in K, pick an arbitrary x ∈ K and suppose that x /∈ U.
Let 0 < ε be given and r ∈ Q with 0 < r < ε. Since {Br(zr1), ..., Br(z

r
nr)} is an open

cover of K, we can select zri ∈ {zr1...zrnr such that x ∈ Br(zri ). So we have |x−zri | < r < ε.
Since ε was arbitrary, for each ε there exists z ∈ U with z 6= x such that |x − z| < ε
meaning x is a limit point of U.
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Here we prove the Arzela-Ascoli’s Theorem. While a few different versions of the
theorem exists the following is the easiest version to prove.

Theorem 8 (Arzela-Ascoli). If K is a compact subset of some metric space X and (fn)
is a sequence of continuous function locally uniformly bounded and unifotmly equicon-
tinuous on K, then (fn) contains a uniformly convergent subsequence (fnk).

Proof. Let U be a countably dense subset of K and (gk) = (fnk) a subsequence of (fn)
pointwise convergent in U which exists by Lemma 1. Let 0 < ε be given and 0 < δ such
that for all z, w ∈ K and for all n ∈ N we have |fn(z)− fn(w)| < ε

3 for |z − w| < δ. Let
q ∈ Q be such that 0 < q < δ, then {Bq(w) : w ∈ U} is an open cover of the compact set
K and so we select {w1...wm} ⊂ U such that {Bq(w1)...Bq(wm)} is a finite subcover of K.
For each i ∈ {1...m}, denote by Ni the natural number for which |gk1(wi)− gk2(wi)| < ε

3
for all Ni < k1, k2 and take N = max{N1...Nm}.

Choose arbitrary z0 ∈ K and pick wi ∈ {w1...wm} such that z ∈ Bq(wi) and k1, k2 ∈ N
where N < k1, k2. We then have by pointwise convergence and uniformly equicontinu-
ity, |gk1(z0)− gk2(z0)| < |gk1(z0)− gk1(wi)|+ |gk1(wi)− gk2(wi)|+ |gk2(wi)− gk2(z0)| <
ε
3 + ε

3 + ε
3 = ε. Since ε was arbitrary, for each ε there exist N ∈ N such that for each

z ∈ K, for all k ∈ N with N < k, |fnk(z)− fnk(z)| < ε.

Definition 10. A family of functions F is said to be a normal if each sequence (fn)
of functions fn ∈ F contains a subsequence (fnk) which converges uniformly on every
compact subset K of U .

Lemma 3. If F is locally bounded in U , then it’s pointwise equicontinuous on U.

Proof. Pick z0 ∈ U and let 0 < r be such that Br(z0) ∈ U and F is uniformly bounded
in Br(z). Let M be such that for all f in F and z ∈ U , |f(z)| < M . Pick z ∈ Br(z0)
such that |z − z0| < r

2 . Denote by γ a closed, piecewise smooth curve whos image is
∂Br(z0). Then for each f ∈ F , we have by Cauchy’s integral formula, f(z) − f(z0) =

1
2πi

∫
γ
f(w)
w−z dw −

1
2πi

∫
γ
f(w)
w−z0dw = 1

2πi

∫
γ

(z−z0)f(w)
(w−z)(w−z0)dw and by Cauchy’s approximation

|f(z)−f(z0)| < r|z−z0|supw∈γ∗|f(w)
r( r

2
) | <

2|z−z0|M
r for all z ∈ B r

2
(z0) as z with |z−z0| < r

2

was arbitrary. Let ε be given and let δ = min{ εr2M ,
r
2} then if z ∈ U such that |z−z0| < δ,

then |f(z)− f(z0)| < 2δM
r < ε. Since f ∈ F , z ∈ B r

2
(z0) were arbitrary, for each f ∈ F

and z ∈ B r
2
(z0), |f(z) − f(z0)| < ε if |z − z0| < δ. Since z0 ∈ U and ε were arbitrary,

such δ exists for every ε and z0, thus F is pointwise equicontinuous.

Lemma 4. If F is pointwise equicontinuous in U , then it is uniformly equicontinuous
on each compact subsets of U .

Proof. Let K be an arbitrary compact subset of U . Let ε be given and for each z ∈ K
let δ(z) be such that for every f ∈ F and w ∈ K, |f(z) − f(w)| < ε if |z − w| <
δ(z). The collection of sets {B δ(z)

2

(z) : z ∈ K} is an open cover of the compact set

K. Let {B delta(z1)
2

(z1)...B δ(zn)
2

(zn)} be a finte subcover of K. We then choose δ =
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min{ δ(z1)
2 ... δ(zn)

2 }. Pick aritrary z0, z ∈ K such that |z − z0| < δ and let zi ∈ {z1...zn}
be such that z0 ∈ B δ(zi)

2

(zi). We then have |z − zi| < |z − z0| + |z0 − zi| < δ + δ(zi)
2 <

δ(zi)
2 + δ(zi)

2 = δ(zi). Let f ∈ F , we have |f(z)−f(z0)| < |f(z)−f(zi)|+|f(zi)−f(z0)| < 2ε.
Since f ∈ F and z, z0 ∈ K with |z − z0| <was arbitrary, for every f ∈ F and z, z0 ∈ K
we have |f(z)− f(z0)| < ε if |z− z0| < δ. Since 0 < ε was arbitrary, F is equicontinuous
on K. As K was an arbitrary compact subset of U , F is uniformly equicontiunous on
every compact subset of U .

Theorem 9 (Montel’s Theorem). Let U ∈ C be an open connected set. If F is a family
holomorphic functions on U locally bounded, then F is a normal family in U .

Proof. Let (fn) be a sequence of functions from F . Construct a sequence of compact
subsets (Kn) of U such that Kn ∈ Kn+1 for each n ∈ N and

⋃
n∈NKn = U .

Suppose there exists some m ∈ N such that for all i ≤ m, (f in) is a subsequence of
(fn) that is uniformly convergent on Ki and is a subsequence of (f i−1

n ). Then (fmn )
is a subsequence of (fn) and thus locally bounded and pointwise equicontinuous. So
the restriction of (fmn ) to the compact set Km+1 is uniformly equicontinuous and so
by Arzela-Ascoli’s theorem, (fmn ) has a subsequence (fm+1

n ) that is uniformly conver-
gent in Km+1. Since (fn) is locally bounded and uniformly equicontinuous on K1, by
Arzela-Ascoli’s theorem, (fn) has a subsequence (f1

n), uniformly convergent in K1. By
Induction such subsequence of (fn) exists for all m ∈ N.

Construct the subsequence (gm) of (fn) by Cantor’s diagonalization method such that
gm = fmm for all m ∈ N where (fmn ) are the subsequence of (fn) as defined before. Then
we have that (gm) is uniformly convergent on Kn for each n ∈ N.

Let K be an arbitrary compact, proper subset of U . Then there exists some N ∈ N
such that K ∈ KN , other wise K 6⊂ Kn for all n ∈ N and thus K 6⊂

⋃
n∈NKn = U .

Since K is is a subset of KN and (gm) is uniformly convergent in KN , (gm) is uniformly
convergent in K. As K was an arbitrary compact subset of U , (gm) is uniformly con-
vergent in every compact subset of U .

Since (fn) was an arbitrary sequence of functions from F , F is a normal family.

4 Hurwitz’s Theorem

Hurwit’z theorem is used to prove the injectivity of the limit function of the locally
uniformly convergent sequence of functions, who’s existence was proved using Montels
Theorem. Hurwitz’s Theorem is fundamentally a statement about the behaviour of the
zeros of a sequence of holomorphic functions. Simply, Hurwitz says that if (fn) is a
sequence of holomorphic functions, locally uniformly convergent to f , then the zeros fo
(fn) converges to the zeros of f .
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Lemma 5. Let U ⊂ C be and open connected set, A ⊂ U and γ a closed piecewise smooth
curve in U/A, null homotopic in U . Denote by U1 the set {a ∈ C/γ : Indγ(a) 6= 0} and
suppose that U1 ⊂ U . If each a ∈ A is isolated, then A

⋂
U1 is finite.

Proof. Suppose the contrary. Let φ : [0, 1]× [0, 1] → be a homotopy from γ to a point.
Pick arbitrary z0 from A/φ([0, 1]× [0, 1]), then the function 1

w−z0 is holomorphic on the

open set U0/{z0} and γ is null homotopic on U0/{z0}. So Indγ(z0) =
∫
γ

1
w−z0dw = 0

meaning z0 6⊂ U1. Thus we have contrapositively that z0 ∈ U1 implies z0 ∈ φ([0, 1]×[0, 1])
and since z0 ∈ A/φ([0, 1] × [0, 1]) was arbitrary, U1

⋂
A ⊂ φ([0, 1] × [0, 1])

⋂
A. By

hypothesis U1
⋂
A is infinite, thus φ([0, 1]×[0, 1])

⋂
A is an infinite subset of the compact

set φ([0, 1] × [0, 1]). We then get that there exist a limit point in φ([0, 1] × [0, 1])
⋂
A

and thus in A, which contradicts the fact that every point in A is isolated.

Corollary 1. Let U ⊂ C be an open connected set, A ⊂ U and γ a closed piecewise
smooth curve in U/A, null homotopic in U . Denote by U1 the set {a ∈ C/γ : Indγ(a) 6=
0} and suppose that U1 ⊂ U . If f : U/A→ C is holomorphic and f has a pole or a zero
of finite order at each a ∈ A then A

⋂
U1 is finite.

Theorem 10 (Argument Principle). Let U ∈ C be an open connected set and let γ be
a simple curve in U , null-homotopic in U. Suppose that U1 := {a ∈ C/γ∗ : Indγ(a) =
1} ⊂ U . Let A ⊂ U be finite and f : U/A → C a holomorphic function. Suppose f has
a pole at each a ∈ A and no poles or zeroes on γ∗. Denote by Nf the number of zeros
of f in U1 and P1 the number of poles in U1 counted to their multiplicities. Then

Nf − Pf =
1

2πi

∫
γ

f ′(z)

f(z)
dz

Proof. A
⋂
U1 is finite by lemma 5. Let A

⋂
U1 = {a1...an} and {z ∈ U1 : f(z) = 0} =

{z1...zm} and denote by pi the order of pole at ai and denote by Ni the order of zero at
zi.
Suppose for some k ∈ {1...n} there exist a holomorphic function hk : U/A → C with
removeable singularities at {a1...ak}, poles at {ak+1...an} with order {pk+1...pn} and
such that

f ′(z)

f(z)
=

k∑
1

pi
z − ai

+
h′k(z)

hk(z)

then the holomorphic extenstion to {a1...ak}
⋂
U/A is unique. Define the function hk+1

by hk+1(z) = (z − ak+1)pk+1hk(z), then hk+1 has a removeable singularity at ak+1. We

have
h′k(z)

hk(z) = − pk+1

z−ak+1
+

h′k+1(z)

hk(z) and so f ′(z)
f(z) =

∑k+1
1

−pi
z−ak+1

+
h′k+1(z)

hk+1(z) .

Since f has pole order p1 at a1, the function h1 defined by f(z) = (z − a1)p1f(z)

has a removeable singularity at a1 and f ′(z)
f(z) = −p1

z−a1 +
h′1(z)
h1(z) . So by induction we have

f ′(z)
f(z) =

∑n
1
−pi
z−ai + h′n(z)

hn(z) where hn is holomorphic in U and hn(z) = (z−a1)...(z−an)f(z)

for all z ∈ U/A. This implies that hn(z) = 0 for all z ∈ {z1...zm}. By analogus argument
to the set of zeros of hn we have that there exists a function hn+m : U → C such
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that h′n(z)
hn(z) =

∑m
0

Ni
z−zi +

h′n+m(z)

hn+m(z) . This gives us f ′(z)
f(z) =

∑n
1
−pi
z−ai +

∑m
1

Ni
z−zi +

h′n+m(z)

hn+m(z)

where hn+m(z) is holomorphic in U . Thus 1
2πi

∫
γ
f ′(z)
f(z) dz = 1

2πi

∫
γ(
∑n

1
−pi
z−ai +

∑m
1

Ni
z−zi +

h′n+m(z)

hn+m(z)dz) = −
∑m

1 pi +
∑n

1 Ni = −Pf +Nf by the residue theorem.

Theorem 11 (Rouche). Let U ∈ C be an open connected set, f : U → C and g : U → C
holomorphic functions, and γ a closed piecewise smooth curve null homotopic in U and
such that Indγ(z) ∈ {0, 1} for all z ∈ C/γ∗. Denote by U1 the set {z ∈ C/γ∗ : Indγ(a) =
1}, NfandNf+g the number of zero in U1 for f and f + g respectively.

If |g(z)| < |f(z)| for all z ∈ γ∗ then Nf = Nf+g.

Proof. Let the set U and the curve γ : [a, b] → C be as described. Suppose f and
g are holomorphic functions on U such that |g(z)| < |f(z)| for all z ∈ γ∗. Let

U0 = {z ∈ U : f(z) = 0} and define the function F : U/U0 → C by F (z) = g(z)
f(z) + 1.

Then for all z ∈ γ∗ we have |F (z)− 1| = | g(z)f(z) | < 1 and so F (z) ∈ B1(1) for all z ∈ γ∗

Now γ(a) = γ(b) so F ◦γ(a) = F ◦γ(b), furthermore F is holomorphic on γ ⊂ U/U0 and
so F ◦ γ is a closed piecewise smooth curve in B1(1). Since B1(1) is simply connected,
F ◦ γ is null homotopic in B1(1). We have that 0 6∈ B1(1) so the function 1

z is holomor-

phic in B1(1) and so by the homotopy theorem
∫
γ
F ′(z)
F (z) dz =

∫
F◦γ

1
zdz = 0.

From the Argument principle Nf+g −Nf =
∫
γ
f ′(z)+g′(z)
f(z)+g(z) dz −

∫
γ
f ′(z)
f(z) dz =

∫
γ

g(z)
f(z)

′

g(z)
f(z)

+1
dz =∫

γ
F ′(z)
F (z) dz =

∫
F◦γ

1
zdz = 0.

Theorem 12. Let U ∈ C be open connected and fn : U → C holomorphic for eachn ∈ N.
Let f : U → C be holomorphic and (fn) a sequence of functions that converges to f lo-
cally uniformly on U. Suppose f is not identically zero in U.

If f has a zero order m at a ∈ U then there exists 0 < r such that Br(a) ⊂ U and
for all s ∈ (0, r) there exists N ∈ N such that for all N < n, the function fn has m zeros
in Bs(a), counted according to their multiplicities.

Proof. Suppose f has a zero order m at a ∈ U . Since f is not identically zero, a is an
isolated zero. Let 0 < R be such that BR(a) ⊂ U and (fn) is uniformly convergent in
BR(a). Let 0 < r < R be such that f(z) 6= 0 for all z ∈ Br(a)/{a}. Choose s with
0 < s < r then Bs(a) ⊂ Br(a). Let γ be the closed piecewise smooth curve whos image
is ∂Bs(a). We have that γ∗ is compact and |f | is continuous and so |f | attains it’s
minimum value in γ∗ and so let z0 ∈ γ∗ be such that |f(z0)| = minz∈γ∗|f(z)|. Since
f(z) 6= 0 for all z ∈ Br(a)/{a} we have that 0 < |f(z0)|. Let 0 < |f(z0)| = ε and
N ∈ N such that for all n ∈ N with N < n, |fn(z) − f(z)| < ε for all z ∈ Br(a). Then
|fn(z) − f(z)| < ε < |f(z)| for all z ∈ γ∗ and so by Rouche’s theorem we have that
Nfn = Nf = m. Since s with 0 < s < r was arbitrary, such holds for all 0 < s < r.
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Hurwitz’s theorem is then a trivial corollary.

Theorem 13 (Hurwitz). Let U ⊂ C be open connected, (fn) a sequence of holomorphic
functions on U , locally uniformly convergent to f : U → C. If fn does not have any
zeros in U for each n ∈ N, then f(z) = 0 for all z ∈ U or f(z) 6= 0 for all z ∈ U .

Proof. Suppose f is not identically zero in U and for some a ∈ U , f(a) = 0. Let m be
the order of zero at a, then by Theorem 12 there exists some 0 < s such that there
exist N ∈ N where fn has m zeroes in Bs(a). This proves the contrapostive of the
theorem.

Theorem 14 (Open Mapping Theorem). Let U ⊂ C be open connect and f : U → C a
holomorphic function which not constant. Then f(U) is open.

Proof. Let b ∈ f(U) be arbitrary, g : U → C defined by g(z) = f(z) − b for all z ∈ U .
Let a ∈ U such that f(a) = b. then a is an isolated zero of g and so let 0 < r
such that Br(b) ⊂ f(U) and g(z) 6= 0 for all z ∈ Br(b)/{b}. Let p be such that
0 < p < r and γ the closed piecewise smooth curve whos image is ∂Bp(b). Then Bp(b) is

compact, |g| continuous so it achieves it’s minimum in Bp(b). Let z0 ∈ Bp(b) such that
|g(z0)| = min

z∈Bp(b)
|g(z)|. Let 0 < |f(z0)| = ε and pick arbitrary w ∈ Bε(a). We have

|b − w| < ε < |f(z)| for all z in γ∗ ⊂ Bp(b). Thus by Rouche’s Theorem we have that
f(z)−w = g(z) + (b−w) has the same number of zeros as f(z)− b = g(z) in Bp(b). So
there exists some z ∈ Bp(b) such that f(z) = w meaning w ∈ f(U). Since w ∈ Bp(b)
was arbitrary, Bp(b) ⊂ f(U) and b ∈ f(U) was arbitrary so for each b ∈ F (U), there
exist an open disk centred at b, contained in f(U). Thus f(U) is open.

5 Proof of the Riemann Mapping Theorem

Definition 11. A function f : U → C is biholomorphic if it is bijective, holomorphic
and the inverse is also holomorphic.

The condition that the inverse of a bijective holomorphic function be holomorphic
in the definition is actually redundent as every bijective holomorphic function has a
holomorphic inverse. Such is the content of the inverse function theorem.

Theorem 15 (Inverse Function Theorem). Let U ∈ C be an open connected set, f :
U → C injective and holomorphic function. Let g : f(U)→ C be the inverse of f . Then
g is holomorphic and f ′(z) 6= 0 for all z ∈ U .

Proof. Neither functions f and g can be constant for if f is constant, f is not injective
and if g is constant, then g is not the inverse function of f .

Let U0 be an arbitrary open subset of U ⊂ C. Then f |U0 holomorphic so by the open
mapping theorem f(U0) is open in C. Thus for every open set U0 = g(f(U0)), f(U0) is
open, hence g : f(U0)→ C is continuous.
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Now fix a ∈ U and write b = f(a). Suppose (for the sake of contradiction) f ′(a) = 0,
then there exists 0 < r such that for all w ∈ Br(b), f −w has 2 zeros counting multiplic-
ities, by Rouche’s theorem. We show that there necessarily exists some w0 ∈ Br(b) such
that f −w0 has 2 distinct zero in Br(z0) which will complete the contradiction. Suppose
for all w ∈ Br(b), f − w has a single zero of order 2. We have that g(Br(b)) is open.
Pick aribitrary z0 ∈ g(Br(b)), then f − f(z0) has a zero order 2 at z0. If

∑
an(z − z0)n

is the Taylor series of f − f(z0) about z0 (convergent in some Br0(z0) ⊂ g(Br(b)), then
f(z0) − w = a0 = 0 and f ′(z0) = a1 = 0. Since z0 ∈ g(Br(z0)) was arbitrary, f ′(z) = 0
for all z in the open connected set g(Br(z0)) (where the connectedness is given since
g is continuous and Br(z0) is connected). Since f is holomorphic, f is constant in
g(Br(z0)), which contradicts the fact that f is injective in U . So there necessarily exists
some w0 ∈ Br(b) such that f − w0 has 2 distinct zero in Br(z0). But again that means
f is not injective in U, so our assumption that f ′(a) = 0 must be wrong. Thus f ′(a) = 0.

Define H : U → C by H(z) :=

{
z−a
f(z)−b if z 6= a

1
f ′(a) if z = a

Then since f is injective f(z) 6= b

for all z 6= a and since f ′(a) 6= 0 and f is continuous, we have that H is continuous on

U. Since g : V → C is continuous we have that H ◦ g(w) =

{
f−1(w)−f−1(w)

w−b if w 6= b
1

f ′(f−1(b))
if w 6= b

is continuous. Thus g = f−1 is differentiable at b ∈ V . Since b was arbitrary, g is
differentiable on V and so f−1 = g holomorphic.

Theorem 16 (Riemann Mapping Theorem). Let U be a nonempty open simply con-
nected subset of C where U 6= C. Then there exists a biholomorphic function f : U →
B1(0).

Proof. Let U ∈ C be an open connected set such that U 6= ∅ and U 6= C. Fix z0 ∈ U
and let F be a family of holomorphic injective functions on U such that for each f ∈ F ,
f(z0) = 0 and |f(z)| < 1 for all z ∈ U .

Since U is a proper subset of C , C/U is not empty and so pick a ∈ C/U . Since U
is simply connected we can define a single valued square root function g(z) =

√
(z − a)

on U where the branch point z = a is not it U . Furthermore, we have that −g(z) ∈ g(U)
for all z ∈ U , other wise for some z, there exists w ∈ U such that g(w) = −g(z). This
would give us w = (−g(z))2 + a = g(z)2 + a = z, and so g(z) = −g(z) meaning g(z) = 0
and so we get z = a and so the contradiction a ∈ U .

Clearly g : U → C is holomorphic and not constant, U is open and (simply) connected.
So by the open mapping theorem g(U) is open. Let 0 < r be such that Br(g(z0)) ⊂ g(U).
For each w ∈ Br(g(z0)) we have | − w + g(z0)| = |w − g(z0)| < r where −w 6∈ g(U) for
each w ∈ Br(g(z0)) so Br(g(z0)) ⊂ C/g(U). From this we get that for each z ∈ U
|g(z) + g(z0)| = |g(z)−−g(z0)| ≥ r and so 2|g(z0)| ≥ r.
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Define the function G : U → C by G(z) = r
5|g(z0)|(

g(z)−g(z0)
g(z)+g(z0)). Then G is a composi-

tion of g and the mobius transformation z 7→ z−g(z0)
z+g(z0) . Since both g and the mobius

transformation z−g(z0)
z+g(z0) are holomorphic and injective, and the composition of two holo-

morphic functions are holomorphic, and of two injective functions are injective, G is
both holomorphic and injective.

Furthermore, let z ∈ U be arbitrary. We have |G(z)| = r
5|g(z0)| |g(z0)|| 1

g(z0) −
2

g(z)+g(z0) | ≤
r

5|g(z0)| |g(z0)|(| 1
g(z0) |+ |

2
g(z)+g(z0) |) ≤

r
5|g(z0)| |g(z0)|(2

r + 2
r ) = r

5|g(z0)|
4|g(z0)|

r = 4
5 < 1. Since

z ∈ U was arbitrary, |G(z)| < 1 for all z ∈ U
.
Lastly, G′(z) = r

5|g(z0)|
2g′(z)(z0)

(g(z)+g(z0))2

Thus G ∈ F and F is not empty.

Let M = supf∈F (|f ′(z0)|) (or ∞ if the supremum doesn’t exist) and let (fn(z0)) be
a sequence of complex numbers that converges to M and let (fn) be the corresponding
sequence of functions from F . Since F is uniformly bounded by 1, by Montel’s theorem
it is a normal family. Let (fnk) be a subsequence of (fn) that converges uniformly in
every compact subsets of U then (fnk) is locally uniformly convergent in U . Let f be the
limit of (fnk). By theorem 7, f is holomorphic on U and so f ′(z0) exists and is finite.
By construction f ′(z0) = supf∈F (|f ′(z0)|) = M is finite.

Let w0 ∈ U be arbitrary and define the functions gk : U/{w0} → C by gk(z) =
fnk(z)− fnk(w0) for all n ∈ N and every z ∈ C, then (gk) converges locally uniformly to
f −f(w0). Since fn is injective for each n, gn is injective for each n and thus gn does not
have any zeros in U/{w0} for all n. By Hurwitz’s theorem f − f(w0) does not have any
zeroes in U/{w0} and so f(z) 6= f(w0) for all z ∈ U/{w0}. Since w0 ∈ U was arbitrary,
f is injective.

Since (fnk) is a sequence of holomorphic functions, locally uniformly convergent to f ,
by Theorem 7 (fnk), is holomorphic. Moreover, by construction f ′(z0) = M .

Suppose for the sake of contradiction that the restriction of the range of f to B1(0),
f : U → B1(0) is not surjective. Let w0 ∈ B1(0) be such that f(z) 6= w0 for all z ∈ U .
Again we can define a single valued, square root function z 7→

√
z which is holomorphic

in the simply connected set U .

Let φ : U → B1(0) be defined by φ(z) = f(z)−w0

1−w0f(z) and the function F : U → B1(0)

by F (z) =
√
φ(z). Let γ be a closed piecewise smooth curve where the initial point is

some fixed z1 in U and the end point is z. Since U is simply connected and φ(z) 6= 0

for all z ∈ U we can define the composition log ◦ φ : U → C by log ◦ φ(z) =
∫
γ
φ′(w)
φ(w) dw

which is holomorphic on U .
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Since F (z) = e
1
2
log◦φ(z) for all z ∈ U , F is holomorphic and Injective for all z ∈ U .

Also, we have that the derivative of F is

F ′(z) =
1

2

φ′(z)√
φ(z)

=
f ′(z0)(1− |w0|2)

2(1− w0f(z0))2

√
(
1− w0f(z0)

f(z0)− w0
)

where since by construction f(z0) = 0, we have at z0

F ′(z0) =
f ′(z0)

2
(1− |w0|2)(

1√
− w0

)

and F (z0) =
√

( f(z0)−w0

1−w0f(z0)) =
√

(−w0).

Now we define the function G : U → C by G(z) = F (z)−F (z0)

1−F (z0)F (z)
. We get that |G′(z0)| =

|F ′(z0)|
(1−|F (z0)|)2 = |f ′(z0)||1−|w0|2|

2
√
|w0|(1−|w0|)2 = 1+|w0|

2
√
|w0| |f(z0)|.

Since 1 − 2
√
|w0| + (

√
|w0|)2 = (

√
|w0| − 1)2 > 0, we have that 1 + |w0| > 2

√
|w0|

and so |G′(z0)| = 1+|w0|
2
√
|w0| |f(z0)| > |f(z0)| = M which contradicts the fact that M =

supf∈F |f ′(z0)|. Thus our function f : U → B1(0) must be surjective.

The function f : U → B1(0) is then holomorphic and bijective on U, and so by the-
orem 15 (Inverse Function Theorem), it’s inverse is also holomorphic and thus f is a
biholomorphic map from U to B1(0).

In some literatures, the Riemann mapping theorem is stated interms of the existence
of a conformal mapping, conformal meaning angle preserving. We show that if f is
biholomorphic in U , f is conformal in U .

Definition 12. Let U ⊂ C be open, c ∈ [a, b] ⊂ R, z ∈ U and γ1, γ2 : [a, b] → U two
smooth curves with γ1(c) = γ2(c) = z and γ′1(c) 6= 0 6= γ′2(c). Then the angle between

γ1 and γ2 at z is the unique θ ∈ (−π, π] such that γ1(c)
γ2(c) = γ1(c)

γ2(c)e
iθ.

Lemma 6. Let U ⊂ C be open, z ∈ U and γ1, γ2 : [a, b] → U two smooth curves with
γ1(c) = γ2(c) = z and γ′1(c) 6= 0 6= γ′2(c). Let f : U → C be a holomorphic function
and suppose that f ′(z) 6= 0. Then the angle between γ1 and γ2 at z is equal to the angle
between f ◦ γ1 and f ◦ γ2 at f(z).

Proof. We have f◦γ1(c)
f◦γ2(c) = f ′(z)γ1(c)

f ′(z)γ2(c) =
γ′1(c)
γ′2(c)

which proves the lemma.

Definition 13. Let U ⊂ C be open and f : U → C a function. Then f is called a
conformal map if f is holomorphic and f ′(z) = 0 for all z ∈ U .

Theorem 17. Let U be a nonempty open simply connected subset of C where U 6= C.
Then there exists a surjective conformal map f : U → B1(0).
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Proof. By theorem 16 (Riemann), there exists a biholomorphic map f from U to B1(0)
and by theorem 15, f ′(z) 6= 0 for all z ∈ U . Thus f : U → C is conformal.
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