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Abstract

Reidemeister torsion (or R-torsion) was originally introduced by K. Reidemeister in 1935, who
used it to classify 3-dimensional lens spaces. R-torsion is a homeomorphism invariant which
may be defined using core concepts in algebraic topology and linear algebra.

Later, in 1971, D. Ray and I. Singer defined an analytic analogue of R-torsion, which involved
using the zeta function to define a regularized determinant of the Laplacian on the space of
differential forms. After proving that their analytic torsion (which has come to be known as
Ray-Singer torsion, or RS-torsion) satisfies many of the same properties of R-torsion, Ray and
Singer conjectured that RS-torsion and R-torsion are equal for closed Riemannian manifolds,
and provided computational evidence. This conjecture was proven independently in celebrated
papers by W. Müller and J. Cheeger.

In 1994, J. M. Bismut and W. Zhang gave an analytic proof of a generalization of the Cheeger-
Müller theorem. Their approach utilizes the Witten deformation of the Laplacian to factorize
the Ray-Singer torsion into large and small components, which then may be analyzed sepa-
rately. In 2003, M. Braverman gave another proof which uses Bismut and Zhang’s analysis of
the small component of the RS-torsion, but introduces a clever comparison analysis of the large
component of the RS-torsion.

In this thesis we present Braverman’s analytic approach. However, we also provide original
proofs for some of the results which are used.
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Chapter 1

Introduction

Torsion is a powerful and intensely studied invariant associated to a cochain complex endowed
with a distinguished basis, or equivalently, an inner product. Reidemeister first introduced tor-
sion in 1935 to classify the Lens spaces, L(p, q), where p and q are coprime integers. The
3-dimensional lens spaces are obtained as a quotient of S3 by an action of Zp. In the same year
Wolfgang Franz, who was a student of Reidemeister, extended R-torsion to arbitrary dimen-
sions and used it to obtain the combinatorial classification of higher dimensional lens spaces.

Remarkably, for fixed p and varying q, the spaces L(p, q) could not be classified up to ho-
motopy or homeomorphism using homology or homotopy groups. Eventually, the lens spaces
were classified up to homeomorphism using Reidemeister torsion, or R-torsion, which is the
torsion associated to the simplicial complex. Thus, Reidemeister torsion is a secondary invari-
ant; it can distinguish homeomorphism classes within homotopy classes.

In 1971, Ray and Singer defined an analytic analogue of R-torsion for smooth manifolds, called
Ray-Singer analytic torsion or RS-torsion [RS71]. RS-torsion is the torsion of the de Rham
complex. As a real vector space, the de Rham complex is infinite dimensional, so Ray and
Singer utilized the zeta function to define the regularized determinant of the Laplacian, which
was then used to define RS-torsion.

In their paper, Ray and Singer computed the RS-torsion for S1 and found that it was equal
to the R-torsion for S1. Additionally, they proved that RS-torsion was independent of the
metric and satisfied many of the same properties as R-torsion. Thus, they conjectured that
R-torsion and RS-torsion are equal for closed Riemannian manifolds. This conjecture was
proven independently in the celebrated papers of Cheeger [Che79] and Müller [Mül78], and
is now known as the Cheeger-Müller theorem. Cheeger’s approach heavily utilized surgery
techniques, while Müller used the fact that torsion is invariant under cellular subdivision.
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8 CHAPTER 1. INTRODUCTION

Since its introduction, RS-torsion has been widely studied. Notably, it features as the partition
function in Schwarz’s BF-theory [Sch78].

Later in 1992, Bismut and Zhang generalized the Cheeger-Müller theorem with a direct analytic
proof [BZ92]. Their proof is a generalization in the following sense. Originally, Ray and Singer
only defined analytic torsion when the closed Riemannian manifold (M, gTM ) is equipped
with a flat vector bundle associated to an orthogonal representation of the fundamental group
π1(M). In this case, the Ray-Singer torsion is independent of the metric [RS71]. Bismut and
Zhang allowed a flat vector bundle F associated to any representation, but required that F is
equipped with a metric which induces a flat metric on the determinant line detF =

∧rank(F ) F .
In this case, the Ray-Singer torsion remains a topological invariant whenM is odd dimensional,
however whenM is even dimensional the Ray-Singer torsion varies with the metric. Thus they
proved an anomaly formula, which tracks the variation of the Ray-Singer torsion with the
metric, and using that formula they related the Milnor torsion to the Ray-Singer torsion.

The Milnor torsion is known to be equal to the Reidemeister torsion on CW-complexes [Mil66],
and is much more convenient to use in the analytic approach.

Bismut and Zhang’s 1992 proof utilizes the Witten deformation of the Laplacian to factorize
the Ray-Singer torsion into two components. In the large t limit, the spectrum of the Witten
Laplacian is split into two components by the interval (e−tC1 , C2t), for some positive constants
C1, C2 > 0. Thus we may consider small and large eigenvalues of the Witten Laplacian, and
compute the Ray-Singer torsion separately on subspaces spanned by small and large eigen-
forms. We will show that the product of the small and large torsion recovers the whole Ray-
Singer torsion, so it sufficies to compute the asymptotics of these components independently.

Bismut and Zhang’s original analysis of the small torsion was later simplified in 1994 [BZ94].
Although [BZ94] proves the Cheeger-Müller theorem in the equivariant setting, we can still
use their results by assuming the group action is trivial.

In 2003, Braverman provided a simplified analysis of the large torsion when M is odd dimen-
sional [Bra03]. By combining Bismut-Zhang’s and Braverman’s results, we obtain a simplified
analytic proof of the Cheeger-Müller theorem for odd dimensional closed Riemannian mani-
folds.

Additionally, we provide original proofs for some of the results which are used. In particular the
proofs for Theorem 4.2.1, Proposition 6.1.3, Proposition 7.2.2, Lemma 7.2.6, Corollay 6.0.2,
and the construction of certain Morse functions on M × S1 × S1 and M × S2 are original,
among others.

The rest of this thesis is structured as follows. In the remainder of Chapter 1 we give a brief
sketch of the proof.
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In Chapter 2 we define the torsion for a cochain complex of finite dimensional vector spaces
and the torsion metric, which is a more natural conceptualization of torsion.

In Chapter 3 we define the Reidemeister and Milnor metrics.

In Chapter 4 we define the Ray-Singer torsion and Ray-Singer metric and prove a product
formula.

In Chapter 5 we give a proof of the spectral gap theorem for the Witten Laplacian.

In Chapter 6 we present Bismut and Zhang’s analysis of the asymptotics of the small torsion.

In Chapter 7 we present Braverman’s analysis of the asymptotics of the large torsion, and then
prove the Cheeger-Müller theorem.

1.1 Outline of the Proof

Let M be a closed n-dimensional Riemannian manifold, and let F → M be a flat real vector
bundle over M . Suppose that F is equipped with a Euclidean metric gF so that the induced
metric on the determinant line bundle detF :=

∧rankF F is flat. Using this data, we may
define the Ray-Singer metric or RS metric on the determinant line detH•(M,F ). We will
denote the RS metric by ‖·‖RSdetH•(M,F ). If n is odd, or if the vector bundle F is associated
to an orthogonal representation, then ‖·‖RSdetH•(M,F ) is a topological invariant of M , so it does
not depend on the choices of metrics gTM or gF . Additionally, when n is even and gF is not
assumed to be flat, the variation of ‖·‖RSdetH•(M,F ) with respect to different choices of Rieman-
nian metric is known [BZ92]. More details on the construction of ‖·‖RSdetH•(M,F ) are given in
Chapter 4.

Suppose that f : M → R is a Morse function which satisfies the Thom-Smale transversal-
ity conditions. Using this data, we may define the Milnor metric on the determinant line,
‖·‖MdetH•(M,F ). Milnor [Mil66] proved that ‖·‖MdetH•(M,F ) is actually a topological invariant,
so it does not depend on the choice of Morse function f . More details on the construction of
‖·‖MdetH•(M,F ) are given in Chapter 3.

If n is odd, or if gF is flat, then the Cheeger-Müller Theorem states that

Theorem 1.1.1.
‖·‖MdetH•(M,F ) = ‖·‖RSdetH•(M,F ). (1.1)

A generalized version of the Cheeger-Müller Theorem, where n is not necessarily odd and gF
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is not necessarily flat has been proven by Bismut and Zhang [BZ92]. In this thesis, however,
we will restrict ourselves to the case where n is odd so we may use the elegant results of
Braverman [Bra03].

The following is a sketch of the proof of Theorem 1.1.1. Consider the de Rham complex
Ω•(M,F ) with coefficients in the vector bundle F . Using the metrics gTM and gF , we may
equip Ω•(M,F ) with an inner product, and consider the Hilbert space Ω•(M,F ), the comple-
tion of Ω•(M,F ). Then we may define a formal adjoint of the differential dF : Ω•(M,F ) →
Ω•+1(M,F ), which we will denote by δF , and the Laplacian ∆ := dF δF + δFdF .

By Hodge Theory, we have the canonical decomposition Ωi(M,F ) = ker ∆i⊕ im dF ⊕ im δF ,
where ∆i is the restriction of ∆ to Ωi(M,F ). Consequently, ker ∆i is canonically isomorphic
to the i-th de Rham cohomology group H i

dR(M,F ). As a subspace of Ωi(M,F ), ker ∆i

naturally inherits an inner product from the inner product on Ω•(M,F ), which is induced from
the metrics gTM and gF . This inner product yields a metric on H i

dR(M,F ) ∼= H i(M,F ),
which defines a metric on the determinant line detH•(M,F ) called the Hodge metric and
denoted by |·|HodgedetH•(M,F ).

It turns out that the Milnor metric is related to the Hodge metric by the Milnor torsion,M(M,f).
In particular, ‖·‖MdetH•(M,F ) = |·|HodgedetH•(M,F ) · M(M,f). Also, the RS metric is by definition
related to the Hodge metric via the Ray-Singer torsion τRS in the same way.

Now we will consider the Witten deformation of the differential, dFt := e−tfdF etf , which is a
family of differentials on Ω•(M,F ) parametrized by t ∈ R. Let δFt := dF∗t . Then the Witten
Laplacian is defined as ∆f,t := dFt δ

F
t +δFt d

F
t . We may define the Witten deformed Ray-Singer

torsion τRS(f, t) by using the Witten Laplacian rather than the usual Laplacian. However,
crucially, since the dimension of M is odd, τRS is a topological invariant, so τRS = τRS(f, t).
This is useful, because the Witten Laplacian has a spectral gap property.

Theorem 1.1.2. There exist positive constants C1, C2 and t0 > 1/C2 so that for |t| ≥ t0,
spec(∆f,t) ⊂ [0, e−|t|C1) ∪ (C2|t|,∞].

We may split the spectrum of ∆f,t into small eigenvalues, which belong to [0, e−|t|C1 ], and
large eigenvalues, which belong to [C2|t|,∞). Thus we may define small and large torsions,
τRS,sm(f, t) and τRS,la(f, t). The Ray-Singer torsion factorizes as τRS(f, t) = τRS,sm(f, t) ·
τRS,la(f, t), so we may analyze the small and large torsions separately.

Let χ(F ) denote the Euler characteristic, let Tr
Cr(f)
s [f ] =

∑
x∈Cr(f)(−1)ind(x)f(x), and let

χ̃′(F ) = rank(F )
∑

x∈Cr(f)(−1)ind(x) ind(x). For the analysis of the small torsion, we will
follow the results of Bismut and Zhang [BZ94] to prove the following theorem,

Theorem 1.1.3. Let M be a closed manifold Riemannian of dimension n, and let F → M be
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a vector bundle associated to a representation π1(M) → GL(n,R) equipped with a metric
gF whose induced metric on the line bundle detF is flat. Let (gTM , f) be a generalized
triangulation for M . Then the following identity holds.

lim
t→+∞

[
log(τRS,sm(f, t)2) + log

 |·|HodgedetH•(M,F )

|·|HodgedetH•(M,F )

2

+ log

(
t

π

)(n
2
χ(F )− χ̃′(F )

)
+ 2t rank(F ) TrCr(f)

s [f ]

]

= log

‖·‖MdetH•(M,F )

|·|HodgedetH•(M,F )

2

.

(1.2)

We will then use this theorem and the factorization of the Ray-Singer torsion to prove the
following.

Theorem 1.1.4. As t→∞,

log(τRS,la(f, t)) = log

(
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

)
+t rank(F ) TrCr(f)

s [f ]− 1

2
χ̃′(F ) log

( t
π

)
+O(1),

(1.3)

Following Braverman’s approach, we consider another n-dimensional Riemannian manifold
M̃ with a vector bundle F̃ → M̃ so that rank(F ) = rank(F̃ ). Additionally, we assume that F̃
is equipped with a Euclidean metric gF̃ so that the induced metric on det F̃ is flat. Finally, we
assume that there exists a Morse function f̃ : M̃ → R so that f and f̃ have the same critical
point structure. This means that we may choose open neighborhoods around the set of critical
points B ⊂ U ⊂ M and B̃ ⊂ Ũ ⊂ M̃ so that there exists an isometry φ : U → U such that

f = f̃ ◦ φ. This means that Tr
Cr(f)
s [f ] = Tr

Cr(f̃)
s [f̃ ], and χ̃′(F ) = χ̃′(F̃ ).

We examine the asymptotics of log(τRS,la(f, t)) − log(τRS,la(f̃ , t)). In particular, we show
that log(τRS,la(f, t))− log(τRS,la(f̃ , t)) has a nice asymptotic expansion, which means that as
t→ ±∞,

log(τRS,la(f, t))− log(τRS,la(f̃ , t)) =

n∑
j=0

aj(t/|t|)tj +

n∑
k=0

bj(t/|t|)tj log |t|+O(1). (1.4)

where the constant term a0 satisfies a0(1) + a0(−1) = 0.
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Now considerM1 = M×S2 andM2 = M×S1×S1. By a result of Milnor, there exist Morse
functions f1 : M1 → R and f2 : M2 → R with the same critical point structure. Let F1 →M1

and F2 → M2 be vector bundles obtained by lifting F to the product manifolds M1 and M2

respectively. Then since f1 and f2 have the same critical point structure, log τRS,la(f1, t) −
log τRS,la(f2, t) has a nice asmptotic expansion. Using this fact and Theorem 1.1.4, we prove
that

log

(
‖·‖RSdetH•(M1,F1)

‖·‖M,f1
detH•(M1,F )

)
= log

(
‖·‖RSdetH•(M2,F2)

‖·‖MdetH•(M2,F2)

)
. (1.5)

Using a well known product formula for the Ray-Singer torsion and Theorem 1.1.4, we prove
that

log

(
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

)
= log

(
‖·‖RSdetH•(M1,F1)

‖·‖M,f1
detH•(M1,F )

)
. (1.6)

and

log

(
‖·‖RSdetH•(M2,F2)

‖·‖M,f2
detH•(M2,F2)

)
= 0. (1.7)

It follows that

log

(
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

)
= log

(
‖·‖RSdetH•(M1,F1)

‖·‖M,f1
detH•(M1,F )

)

= log

(
‖·‖RSdetH•(M2,F2)

‖·‖M,f2
detH•(M2,F2)

)
= 0.

(1.8)

Thus,
‖·‖RSdetH•(M,F ) = ‖·‖MdetH•(M,F ). (1.9)



Chapter 2

The Knudsen-Mumford Map

In this chapter, we will describe the Knudsen-Mumford map, which originally appeared in
[KM76]. All vector spaces in this thesis are over R.

2.1 The Determinant Line of a Chain Complex

If λ is a one-dimensional vector space, let λ−1 denote the dual space of λ. If v ∈ λ we will
sometimes denote by v−1 ∈ λ−1 the dual element to v.

Given a finite dimensional vector space V , define the determinant line of V to be detV :=∧dimV V . The motivation for this is that any given endomorphism T : V → V , the induced
map on the determinant line detT : detV → detV acts by scaling detV by the usual deter-
minant of T .

Consider the following cochain complex of vector spaces

0→ V 0 d0−→ V 1 d1−→ · · · d
n−1

−−−→ V n → 0. (2.1)

Denote V • =
⊕n

i=0 V
i and d• = d =

⊕n
i=0 d

i so that d is a homomorphism mapping V • to
V •. In the case of a cochain complex V •, we will instead define the determinant line of the
cochain complex V • to be

detV • =
n⊗
i=0

(detV i)(−1)i . (2.2)

Denote elements of detV • by v• = v0 ⊗ v−1
1 ⊗ · · · ⊗ v

(−1)n

n .

13



14 CHAPTER 2. THE KNUDSEN-MUMFORD MAP

In the case of a cochain complex V •, we will always define detV • using the alternating product
(2.2) rather than considering the top degree forms on the direct sum ⊕ni=0V

i.

Consider the cohomology of V •. For each i, let Zi = ker di ⊆ V i and Bi = im di−1 ⊂ V i.
Define the i-th cohomology group of V • to be H i(V •, d) = H i(V •) = Zi/Bi.

We can also consider the cohomology of V • to be a cochain complex, whose differential is the
zero map:

0→ H0(V •)→ H1(V •)→ · · · → Hn(V •)→ 0. (2.3)

As before, define H•(V •) =
⊕n

i=0H
i(V •) and

detH•(V •) =
n⊗
i=0

(detH i(V •))(−1)i . (2.4)

Given two finite dimensional vector spaces V , W , there is a canonical isomorphism µV,W :
detV ⊗ detW → det(V ⊕W ) given by

µV,W :
(
∧dimV
i=1 vi

)
⊗
(
∧dimW
i=1 wi

)
→
(
∧dimV
i=1 vi

)
∧
(
∧dimW
i=1 wi

)
. (2.5)

One may easily check that this construction is associative, so µU,V,W : detU ⊗ detV ⊗
detW → det(U ⊕ V ⊕W ) is well defined.

2.2 The Knudsen-Mumford Map

To define the Knudsen-Mumford map, we require the introduction of a distinguished basis vi
for each V i and a distinguished basis hi for each H i(V •). We will identify the bases vi and
hi with a volume element in detV i and detH i(V •) respectively in the following way. If
vi = (vi,1, ..., vi,dimV i), then consider vi as an element of detV i as follows. Let

vi = vi,1 ∧ · · · ∧ vi,dimV i ∈ detV i. (2.6)

We may also consider hi as an element of H i(V •) in the same way.

Note that
0→ Zi ↪→ V i di−→ Bi+1 → 0 (2.7)

is a short exact sequence. Thus there is a non-canonical splitting V i ∼= Zi ⊕Bi+1. Similarly,

0→ Bi ↪→ Zi → H i(V •)→ 0 (2.8)
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is a short exact sequence, so there is a non-canonical splitting Zi ⊕ H i(V •) ⊕ Bi. Hence
V i ∼= H i(V •) ⊕ Bi+1 ⊕ Bi non-canonically. This isomorphism is determined by a choice of
basis for eachBi. We can remove this dependence by passing to the determinant line. For now,
let bi be a basis for each Bi.

The isomorphism V i ∼= H i(V •)⊕Bi+1⊕Bi determines an isomorphism detV i ∼= detH i(V •)⊗
detBi+1 ⊗ detBi. Then, for any ui ∈ detV i, there exists some ai ∈ R so that

aiµdetHi(V •),Bi,Bi+1(hi ⊗ bi ⊗ bi+1) = ui. (2.9)

Let u• = ⊗ni=0u
(−1)i

i ∈ detV •. Also, let

ah• = (a0h0)⊗ (a1h1)−1 ⊗ · · · ⊗ (anhn)(−1)n . (2.10)

Define the Knudsen-Mumford map κ : detV • → detH•(V •) by

u• 7→ ah•. (2.11)

We immediately see that κ does not depend on the choices of bi, since if we were to choose
some other basis b′i = Bibi, where Bi ∈ Aut(Bi), then

detBiai detBi+1µdetHi(V •),Bi,Bi+1(hi ⊗ b′i ⊗ b′i+1) = a′i(hi ⊗ b′i ⊗ b′i+1) = ui (2.12)

where in the above equation detBi and detBi+1 denote the usual determinant of an endomor-
phism. But then

a′h• = detB0 detB1h0 ⊗ (detB1 detB2h1)−1 ⊗ · · · ⊗ (detBn detBn+1hn)(−1)n (2.13)

Since B0 = Bn+1 = 0, B0 and Bn+1 must be the identity, so detB0 = detBn+1 = 1.
Additionally, each other instance of detBi is cancelled by (detBi)

−1 in the preceeding or
subsequent term, so there is no net effect of the changes of basis for each Bi. Therefore

a′h• = ah• = κ(u•). (2.14)

Since both detH•(V •) and detV • are one dimensional, to check that κ is an isomorphism it
is sufficient to check that it is not the zero map. However, this is clear, since each isomorphism
V i ∼= H i(V •)⊕Bi+1 ⊕Bi is not the zero map, unless V i = 0 for each i.

In the special case where the cochain complex V • is acyclic, H•(V •) ∼= R. In this case, we
define the torsion of the cochain complex V • by τ = κ(v•) ∈ R. This definition agrees with
the classical definition of torsion given in, for example, [Mil66].
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2.3 The Determinant of the Laplacian

In this section, we will derive a concrete formula for the Knudsen-Mumford map using a
Hodge-theoretic approach.

Recall that choosing a distinguished basis vi for each V i fixes a canonical inner product 〈·, ·〉V i
for each V i, which we obtain by declaring the basis elements to be orthonormal. Then with
respect to these inner products, we may define the adjoint δi = di∗ : V i+1 → V i of the
differential di. Define the Hodge Laplacian,

∆i = δidi + di−1δi−1. (2.15)

Denote ∆ = ⊕ni=0∆i : V • → V •. The Laplacian is a non-negative self-adjoint operator. The
following theorem is well-known, and a proof can be found in [Ros97].

Theorem 2.3.1 (Hodge Decomposition Theorem). For each V i there is an orthogonal decom-
position

V i = ker ∆i ⊕ im di−1 ⊕ im δi. (2.16)

Recall that im δi = (ker di)⊥. Since the above decomposition is orthogonal, ker di = ker ∆i⊕
im di−1, therefore we get

H i(V •) = ker di/ im di−1 = (ker ∆i ⊕ im di−1)/ im di−1 ∼= ker ∆i. (2.17)

Recall the distinguished volume elements vi for each detV i and hi for each detH i(V •).

Proposition 2.3.2. The Knudsen-Mumford map is given by

κ(v•) =

n∏
k=0

(
det’(δkdk)

1
2

(−1)k
)
h• ∈ detH•(V •), (2.18)

where det’(δkdk) denotes the product of the non-zero eigenvalues of the self-adjoint map δkdk.

Proof. It suffices to show that ak = det’(δkdk)
1
2 for each k. Let ∆k

im dk−1 denote the restriction
of ∆k to im dk−1. Then ∆k

im dk−1 = dk−1δk−1. Choose an orthonormal basis of eigenvectors
{bk,i}, i.e. ∆k

im dk−1bk,i = λk,ibk,i. Now set b̃k−1,i = λ−1
k,i δ

k−1bk,i. Then dk−1b̃k−1,i = bk,i.

Observe that bk,i is a basis for Bi, and also since dk b̃k,i = bk+1,i, span{b̃k,i} is isomorphic to
Bi+1. Then

V k ∼= Hk(V •)⊕Bk ⊕Bk+1 ∼= ker ∆k ⊕ span{bk,i} ⊕ span{b̃k,i}. (2.19)
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With respect to the inner product determined by vk, ‖bk,i‖ = 1, and

‖b̃k−1,i‖2 = 〈b̃k−1,i, b̃k−1,i〉
= 〈λ−1

k,i δ
k−1bk,i, λ

−1
k,i δ

k−1bk,i〉

= 〈λ−1
k,i bk,i, λ

−1
k,id

k−1δk−1bk,i〉

= λ−1
k,i bk,i〈bk,i, bk,i〉

= λ−1
k,i .

(2.20)

Thus ‖b̃k−1,i‖ = λ
− 1

2
k,i . We find that

ak =
∏
i

‖b̃k,i‖−1 =
∏
i

λ
1
2
k+1,i. (2.21)

However, each λk+1,i is a non-zero eigenvalue of δkdk. To see this, note that

δkdk(b̃k,i) = δkdk(λ−1
k+1,iδ

kbk+1,i)

= δkλ−1
k+1,id

kδkbk+1,i

= δkbk+1,i

= λk+1,ib̃k,i.

(2.22)

Thus ak = det’(δkdk)
1
2 .

Proposition 2.3.3. The Knudsen-Mumford map is given by

κ(v•) =
( n∏
k=0

(det’ ∆k)
1
2
k(−1)k+1

)
h•. (2.23)

Proof. If λ is an eigenvector of δkdk with eigenvector v, then (dkδk)dkv = λdkv. Thus λ is
also an eigenvector of dkδk with eigenvector dkv. It follows that spec(dkδk) = spec(δkdk).
Also, since the domains of δkdk and dk−1δk−1 are orthogonal,

spec(∆k) = spec(δkdk) ∪ spec(dk−1δk−1). (2.24)

Therefore,
det’(∆k) = det’(δkdk) det’(δk−1dk−1) (2.25)
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and we obtain( n∏
k=0

(det’ ∆k)
1
2
k(−1)k+1

)
=
( n∏
k=0

(det’(δkdk) det’(δk−1dk−1))−
1
2
k(−1)k

)
=
( n∏
k=0

(det’(δkdk))−
1
2

(k(−1)k+(k+1)(−1)k+1)
)

=
( n∏
k=0

(det’(δkdk))
1
2

(−1)k
)
.

(2.26)

2.4 Torsion as a Metric on the Determinant Line

Suppose that each detV i is equipped with an inner product 〈·, ·〉detV i . Since each detV i is a
one-dimensional real vector space, defining an inner product is equivalent to defining a norm
‖·‖detV i . Equip the line detV • with the norm

‖·‖detV • =
n⊗
k=0

‖·‖
(detV k)(−1)k . (2.27)

Let ‖·‖detH•(V •) be the norm on the line H•(V •) which is induced by the norm ‖·‖detV • via
the Knudsen-Mumford map. We call ‖·‖detH•(V •) the torsion metric.

For each i, let 〈·, ·〉V i be an inner product on the space V i which induces the norm ‖·‖detV i on
detV i. Let 〈·, ·〉V • =

⊕n
i=0〈·, ·〉V i , which is the orthogonal sum of the inner products on each

V i.

Using these inner products we may define the Hodge Laplacian ∆, with ker ∆i ∼= H i(V •)
canonically. Since each ker ∆i is a vector subspace of V i, it inherits the inner product 〈·, ·〉V i ,
which we may use to equip H i(V •) with an inner product via the canonical isomorphism
ker ∆i ∼= H i(V •). We will denote this inner product by 〈·, ·〉Hi(V •). The inner products
〈·, ·〉Hi(V •) determines a norm on detH i(V •), which we will denote by |·|Hodge

detHi(V •)
. Let

|·|HodgedetH•(V •) =
n⊗
k=0

|·|Hodge
(detHk(V •)(−1)k

. (2.28)

By choosing orthonormal bases vi for V i and hi for H i(V •) and utilizing Proposition 2.3.3,
we see that

‖·‖detH•(V •) =
( n∏
k=0

(det’ ∆k)
1
2
k(−1)k+1

)
|·|HodgedetH•(V •). (2.29)
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Remark 2.4.1. It should be noted that
(∏n

k=0(det’ ∆k)
1
2
k(−1)k+1

)
and |·|HodgedetH•(V •) both de-

pend on the inner products 〈·, ·〉V i , however ‖·‖H•(V •) does not.
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Chapter 3

The Milnor Metric

3.1 The Reidemeister Metric

Given a closed Riemannian manifold (M, gTM ), we may consider a number of cochain com-
plexes associated to M which capture topological data. In the case where the cochain complex
is finite dimensional, we may use the Knudsen-Mumford map to obtain a torsion metric on
the cohomology determinant line. For simplicial cohomology, the associated torsion metric is
called the Reidemeister metric.

Let K be a triangulation of M , and choose some lift of K, K̃ to the universal cover M̃ .
Then the fundamental group π1(M) acts on M̃ , and thus K̃, by deck transformations. We may
extend this action to an action of the group ring Z(π1(M)) on the groups of simplicial cochains
with real coefficients Ci(K̃,R). In this way, Ci(K̃,R) may naturally be considered as a right
Z(π1(M))-module.

Given an orthogonal representation of the fundamental group ρ : π1(M) → O(n), define the
ρ-twisted simplicial cochain complex as

Ci(K̃, ρ) = Ci(K̃,R)⊗ρ Rn. (3.1)

In particular, for γ ∈ π1(M), cγ⊗v = c⊗ρ(γ)v. R also has a natural left action on Ci(K̃,R)
and a natural right action on Rn, so we may consider each Ci(K̃, ρ) as a real vector space,
which is finite dimensional since M is closed.

Let {σij} be the simplicial i-cochains and let {ek} be the usual basis for Rn. Define an inner
product on Ci(K̃, ρ) by declaring elements of the form σij ⊗ ek to be orthonormal.

21
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Definition 3.1.1. The Reidemeister metric ‖·‖R
detH•(K̃,ρ)

on detH•(K̃, ρ) is the metric ob-
tained by applying the construction in Section 2.4 to the ρ-twisted simplicial cochain complex.

Historically, Reidemeister considered the case when C•(K̃, ρ) was acyclic. In this case, we
associate the Reidemeister metric to a real number, which we call the Reidemeister torsion.

Definition 3.1.2. If the complex C•(K̃, ρ) is acyclic, the Reidemeister torsion associated to
the representation ρ is defined to be

τR(M,ρ) =
n∑
k=0

(det ∆k)
1
2
k(−1)k+1

, (3.2)

where ∆k is the restriction of the Hodge Laplacian ∆ to the cochain group Ck(K̃, ρ).

Remark 3.1.3. τR(M,ρ) actually may be defined for arbitrary simplicial complexes using the
above process. However, we are only interested in the case where M is a manifold, since
Ray-Singer torsion may only be defined for manifolds.

Initially it was not known that τR(M,ρ) is a topological invariant. First, in 1949 Whitehead
[Whi49] proved that τR(M,ρ) is invariant under simplicial subdivisions of the triangulation
K. Later, in 1969, Kirby and Siebenmann [KS69] proved that τR(M,ρ) is a topological invari-
ant for manifolds. Finally, in 1974, Chapman [Cha74] proved that τR(M,ρ) is a topological
invariant for simplicial complexes.

3.2 Homology With Local Coefficients

When considering R-torsion, we utilized the ρ-twisted simplicial complex. When we later
move on to defining Milnor and Ray-Singer torsion, it is far more easier to consider simpli-
cial cohomology with local coefficients, which is an equivalent construction. We will very
briefly define simplicial cohomology with local coefficients here, and then state a theorem
which establishes how simplicial cohomology with local coefficients is equivalent to ρ-twisted
simplicial cohomology. This section follows [Dav01, Chapter 5]

Throughout this section, assume that M is a closed manifold, however this construction works
more generally for CW-complexes.

Definition 3.2.1. A system of local coefficients on M is a fiber bundle F → M whose fibers
Fx are discrete abelian groups.
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Suppose (σki ) is a triangulation of M with simplicies σki : ∆k →M . Let Ck(M,F ) consist of
the formal sums ∑

i

aiσ
k
i (3.3)

where ai ∈ Fσki (e0) and e0 = (1, 0, ..., 0) ∈ ∆k. We will equip Ck(M,F ) with the obvious
addition operation, which turns Ck(M,F ) into an abelian group.

Now we will describe the differential. Recall the usual face maps fkm : ∆k−1 → ∆k defined by
fkm(t0, t1, ..., tk−1) = (t0, ..., tm−1, 0, tm, ..., tk−1). Also, for a given simplex σki : ∆k → M ,
let γσki : [0, 1] → M be the continuous path σki (t, 1− t, 0, ..., 0). By lifting this path, we may
define an isomorphism of the fibers γσki : Eσki (0,1,...,0) → Eσki (1,0,...,0).

With these maps, we define the differential dk : Ck(M,F )→ Ck−1(M,F ) to be

dk(aσ) = γσ(a)(σ ◦ fk0 ) +

k∑
i=1

(−1)ma(σ ◦ fkm). (3.4)

Theorem 3.2.2 ([Dav01, Theorem 5.8]). The map d satisfies d2 = 0, and is thus a differential.
Additionally, the homology groups Hk(C•(M,F )) equals the ρ-twisted simplicial homology
Hk(M,ρ) for some representation ρ of the fundamental group π1(M).

A similar construction applies to cohomology. LetCk(M,F ) be the set of all functions cwhich
map a simplicial simplex σ to an element c(σ) ∈ Eσ(e0). Then Ck(M,F ) is an abelian group,
and a differential dk : Ck(M,F )→ Ck+1(M,F ) may be defined by

dk(c)[σ] = (−1)k
(
γ−1
σ (c(d0σ)) +

k+1∑
i=1

(−1)ic(diσ)
)
. (3.5)

By [Dav01, Theorem 5.9], d is indeed a differential for the cochain complex C•(M,F ). We
will denote the cohomology of this complex H•(C•(M,F )).

In the above constructions we are using homology and cohomology with integral coefficients.
We may also consider simplicial chain groups with real coefficients Ck(M,R) = Ck(M)⊗R.
If we do so, we may allow the fibers of F to be real vector spaces, and define the homology
and cohomology with local real coefficients H•(M,F ), and H•(M,F ) respectively.

3.3 The Thom-Smale Complex

In this section we will define the Milnor metric, which arises as the torsion metric obtained
from the Thom-Smale complex. Milnor [Mil66] proved that the Milnor metric and the Rei-
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demeister metric agree on smooth manifolds. To prove the Cheeger-Müller theorem for odd
dimensional manifolds, we will show that the Milnor metric and Ray-Singer metric agree on
closed odd dimensional Riemanninan manifolds. The reason the Milnor metric is preferred
over the Reidemeister metric is that the Milnor metric is better suited to the analytic approach.

Let (M, gTM ) be a closed Riemannian manifold and let F be a real vector bundle equipped
with a metric gF so that gF induces a flat metric on detF . Let f : M → R be a smooth
function. Recall that the points p ∈ M where dfp = 0 are called the critical points of f . Let p
be a critical point of f , and choose local coordinates (x1, ..., xn) in a neighborhood of p. Recall
that a critical point p ∈M is called non-degenerate if the Hessian matrix(

∂2f

∂xi∂xj
(p)

)
(3.6)

is non-singular. A Morse function is a smooth function f : M → R whose critical points are
all non-degenerate. Also recall that the index of the critical point p is the number of negative
eigenvalues of the Hessian matrix at p. The index of p is denoted ind(p).

Let ∇f be the gradient vector field of f with respect to the metric g. Consider the gradient
flow equation

dy

dt
= −∇f(y). (3.7)

This differential equation determines a set of diffeomorphisms (φt)t∈R on M . If p is a critical
point of f , define the unstable manifold of p to be

W u(p) = {x ∈M | lim
t→−∞

φt(x) = p}. (3.8)

Similarly, define the stable manifold of p to be

W s(p) = {x ∈M | lim
t→∞

φt(x) = p}. (3.9)

We will make a few assumptions about our Morse function f . We will assume that∇f satisfies
the Smale transversality conditions. In particular, we will assume that if p and q are two
critical points of f , with p 6= q, then W u(p) and W s(q) intersect transversally. This means for
all x ∈W u(p) ∩W s(q),

TxW
u(p) + TxW

s(q) = TxM. (3.10)

By [Sma61], for a given Morse function f , we may always choose a metric gTM so that ∇f
satisfies the Smale transversality conditions. Furthermore, we will also assume that f is self-
indexing, which means that for all critical points x ∈ M , f(x) = ind(x). We will also utilize
the Morse Lemma to guarantee the existence of certain coordinate neighborhoods around each
critical point which has particularly nice coordinate functions. All of these assumptions are
summed up in the following definition.
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Definition 3.3.1. The pair (gTM , f) is called a generalized triangulation of M if f : M →
R is a self-indexing Morse function which satisfies the Smale transversality conditions and
in a neighborhood Ux of each critical point x ∈ M of f , we may choose local coordinates
(y1, ..., yn) so that gTM is Euclidean with respect to these coordinates, and f takes the form

f(y) = ind(x)− 1

2
(y2

1 + ...+ y2
k) +

1

2
(y2
k+1 + ...+ y2

n). (3.11)

We will always assume that gTM and f are chosen so that (gTM , f) is a generalized triangula-
tion.

We proceed to construct the Thom-Smale complex. If ind(y) = ind(x) − 1, it is known that
W u(x) ∩W s(y) consists of a finite set of intergral curves, γ, of the vector field −∇f , with
γ−∞ = x, γ+∞ = y and along whichW u(x) andW s(y) intersect transversely. We will denote
this finite set of integral curves Γ(x, y).

Fix an orientation on eachW u(x), where x ∈ B, and some x, y ∈ B with ind(y) = ind(x)−1.
Let γ ∈ Γ(x, y). Note that TyW u(y) is orthogonal to TyW s(y), and TyW u(y) inherits an
orientation from W u(y). Then for t ∈ (−∞,∞], the orthogonal complement T⊥γtW

s(y) to
TγtW

s(y) also has a natural orientation.

Also, for t ∈ (−∞,∞), the subbundle, T⊥
′

γt W
s(x), which is defined to be orthogonal to

−∇f(γt) in TγtW
u(x) can be oriented in such a way that b is an oriented base of T⊥

′
γt W

u(x)
if (−∇f(γt), b) is an oriented base of TγtW

u(x). Since W u(x) and W s(y) are transversal
along γ, for t ∈ (−∞,∞), T⊥γtW

s(y) and T⊥
′

γt W
u(x) can be identified, and their orientations

can be compared. Let

νγ(x, y) =

{
+1 if the orientations are the same,
−1 if the orientations are different.

(3.12)

By [Lau92, Proposition 2, Remark 3], the unstable cells W u(x) form a cellular decomposition
of M . Therefore, we may form the cellular chain groups with real coefficients, C•(W u,R).
For any critical point x, let [W u(x)] ⊆ C•(W

u,R) be the subspace which is spanned by
W u(x) ∈ C•(W u,R).

Let F be a flat vector bundle on M , and let F ∗ be the dual bundle. Define

C•(W
u, F ∗) =

⊕
x∈B

[W u(x)]⊗R F
∗
x ,

Ci(W
u, F ∗) =

⊕
x∈B

ind(x)=i

[W u(x)]⊗R F
∗
x .

(3.13)



26 CHAPTER 3. THE MILNOR METRIC

Note that if x ∈ B, then the bundle F ∗ is canonically trivialized on W u(x). If x, y ∈ B are
such that ind(y) = ind(x)− 1, if γ ∈ Γ(x, y), and if f∗ ∈ F ∗x , let τγ(f∗) ∈ F ∗y be the parallel
transport of f into F ∗y along γ with respect to the flat connection of F ∗.

Now we will define a boundary map. If x ∈ B, and if f∗ ∈ F ∗x , define

∂(W u(x)⊗ f∗) =
∑
y∈B

ind(y)=ind(x)−1

∑
γ∈Γ(x,y)

νγ(x, y)W u(y)⊗ τγ(f∗). (3.14)

Extend ∂ by linearity so that ∂ maps Ci(W u, F ∗) into Ci−1(W u, F ∗). By [Lau92, Proposition
6], ∂2 = 0, so C•(W u, F ∗) is a chain complex. Since C•(W u, F ∗) is a cellular complex
Hk(C

•(W u, F ∗)) is canonically isomorphic to Hk(M,F ) for all k by [Hat02, Theorem 2.35].

We may also consider the associated cochain complex C•(W u, F ∗). If x ∈ B, let [W u(x)]∗ be
the line which is dual to [W u(x)]. Let (C•(W u, F ), d) be the dual complex to (C•(W

u, F ∗), d).
Then

Ci(W u, F ) =
⊕
x∈B

ind(x)=i

[W u(x)]∗ ⊗R Fx. (3.15)

C•(W u, F ) is a cellular complex, there is also an isomorphism between Thom-Smale coho-
mology and simplicial cohomology. The following theorem is proven in [Hat02, Theorem
3.5].

Theorem 3.3.2. There is a canonical isomorphism

H•(C•(W u, F )) ∼= H•(M,F ). (3.16)

The complex C•(W u, F ) is called the Thom-Smale complex.

3.4 The Milnor Metric

For each x ∈ Crk(f), the elements [W u(x)]∗ form a natual basis for Ck(W u), which provides
us with an inner product 〈·, ·〉Ck(Wu). Define a preferred inner product on Ck(W u, F ) by
〈·, ·〉Ck(Wu,F ) = 〈·, ·〉Ck(Wu) ⊗ gF .

Via the Knudsen-Mumford isomorphism, detC•(W u, F ) ∼= detH•(C•(W u, F )). By the
previous section, H•(C•(W u, F )) ∼= H•(M,F ), which induces a canonical isomorphism
detH•(C•(W u, F )) ∼= detH•(M,F ). Then there is a canonical isomorphism detC•(W u, F ) ∼=
detH•(M,F ).
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Definition 3.4.1. The Milnor metric ‖·‖MdetH•(M,F ) on the real line detH•(M,F ) is the metric
corresponding to the induced metric on detC•(W u, F ) by the canonical isomorphism

detH•(M,F ) ∼= detC•(W u, F ). (3.17)

Let ∆ be the Hodge Laplacian on C•(W u, F ) associated to the inner product 〈·, ·〉Ck(Wu,F ).
Set

τM(M,f) =
( n∏
k=0

(det’ ∆k)
1
2
k(−1)k+1

)
. (3.18)

We call τM(M,f) the Milnor torsion. By (2.29)

‖·‖MdetH•(M,F ) = τM(M,f)|·|HodgedetH•(M,F ). (3.19)

The following is proved in [Mil66, Theorem 9.3].

Theorem 3.4.2. Suppose that K is a triangulation of M . Let a representation ρ be chosen so
that the ρ-twisted cohomology is isomorphic to H•(M,F ). Then

τR(K̃, ρ) = τM(M,f). (3.20)

Moreover, τM(M,f) does not depend on the choice of generalized triangulation (gTM , f).

By Theorem 3.4.2, the Milnor metric and Reidemeister metric agree, so the Milnor metric is a
homeomorphism invariant. In the sequeal, the Milnor torsion will still be denoted τM(M,f)
since it will be useful to keep track of the Morse function.
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Chapter 4

The Ray-Singer Metric

In this chapter, we will define the Ray-Singer metric. Ideally, the Ray-Singer metric would
be defined by applying the Knudsen-Mumford isomorphism to the determinant line obtained
from the de Rham complex of M . However we immediately encounter a problem, since the
Knudsen-Mumford isomorphism is only defined when the underlying cochain complex consists
of finite dimensional vector spaces.

We will circumvent this problem by first defining Ray-Singer analytic torsion using the regu-
larized determinant of the Hodge Laplacian. The Ray-Singer metric is obtained by scaling the
Hodge metric on the determinant line detH•dR(M,F ) by the Ray-Singer torsion.

4.1 Ray-Singer Analytic Torsion

Let (M, gTM ) be a closed n-dimensional Riemannian manifold. Let F → M be a real flat
vector bundle equipped with a smooth metric gF which induces a flat metric on detF .

Let Ω•(M,F ) =
⊕

i Ωi(M,F ) be the space of smooth differential forms on M with values in
F . Each Ωi(M,F ) is the space of smooth sections of the vector bundle ΛiT ∗M ⊗ F .

Let ∇F be the flat connection on the flat vector bundle F . Since this connection is flat, it may
be extended via the Leibniz rule to a differential di : Ωi(M,F )→ Ωi+1(M,F ).

The metric defines the Hodge star operator, ∗ : Ωi(M,F ) → Ωn−i(M,F ) and provides each

29
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Ωi(M,F ) with an inner product:

〈f, g〉Ωi(M,F ) =

∫
M
〈f ∧ ∗g〉F , (4.1)

where 〈· ∧ ·〉F is determined by the usual wedge product of differential forms, and the inner
product on F . Denote by 〈·, ·〉Ω•(M,F ) the orthogonal sum of these inner products. The L2-
completion of each Ωi(M,F ) with respect to this inner product is a Hilbert space and define
the formal adjoint of dF , δF . Define the Hodge Laplacian:

∆ = δFdF + dF δF . (4.2)

∆ is formally self-adjoint, since

〈∆f, g〉 = 〈(δFdF + dF δF )f, g〉
= 〈δFdF f, g〉+ 〈dF δF f, g〉
= 〈f, δFdF g〉+ 〈f, dF δF g〉
= 〈f,∆g〉.

(4.3)

Furthermore, ∆ is compact and elliptic [Ber+02, Page 19]. Thus the spectrum of ∆ only
consists of countably many eigenvalues with finite multiplicity and exactly one accumulation
point at∞. By the Hodge theorem the de Rham’s theorem,

H•(M,F ) ∼= ker ∆. (4.4)

As ker ∆ is a vector subspace of Ω•(M,F ), it inherits the inner product 〈·, ·〉Ω•(M,F ). There is
an induced inner product on H•(M,F ) via the above isomorphism, which in turn induces the
Hodge metric on detH•(M,F ).

Let ∆i denote the restriction of ∆ to Ωi(M,F ). If we need to specify the vector bundle F , we
will write ∆F,i to denote the restriction of ∆F to Ωi(M,F ). Let Pi : Ω•(M,F ) → ker ∆i

denote the orthogonal projection to ker ∆i. We wish to define “det ∆i.” One might set

det ∆i =
∏
j

λj , (4.5)

where each λj is an eigenvalue of ∆i. Unforunately, we encounter two problems. First, if
zero is an eigenvalue of ∆i, then this product evaluates to zero, which is not useful. Second,
even if zero is not an eigenvalue, this product diverges. We may avoid the first problem by
only considering non-zero eigenvalues. To get around the second problem, we will utilise zeta
function regularization.
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For s ∈ C, let ζi(s) =
∑

λ∈spec(∆i)\0 λ
−s. ζi is known as the zeta function of the operator ∆i.

ζi is well defined for Re(s) � 0, and by [Roe98, Chapter 8] ζi has a meromorphic extension
which is analytic at 0. Define the regularized determinant det’ ∆i by the formula

log det’ ∆i = ζ ′i(0). (4.6)

To motivate this formula, suppose that V is a finite dimensional real vector space with dimen-
sion m, and let L : V → V be a linear map with strictly positive eigenvalues {λ1, ..., λm}.
Consider the zeta function of A, ζL(s) :=

∑m
i=1 λ

−s
i . This is a finite sum, so it is well defined

for all s ∈ C. Differentiating ζL we obtain

ζ ′L(s) =
m∑
i=1

−λ−si log(λi). (4.7)

By setting s = 0 we obtain

ζ ′L(0) =
m∑
i=1

log(λi)

= log
( m∏
i=1

λi

)
= log detL.

(4.8)

To summarize, in finite dimensions the derivative of the zeta function associated to L at 0 is
precisely log detL. Therefore, in infinite dimensions, it is reasonable to define the determinant
of a linear operator using the zeta function. Using this definition of the regularized determinant
of the Laplacian, we can define the Ray-Singer torsion by a familiar formula.

Definition 4.1.1. The Ray-Singer torsion τRS(M,F ) is defined by

log τRS(M,F ) =
1

2

n∑
i=0

(−1)ii log det’ ∆i. (4.9)

The Ray-Singer metric on the line detH•(M,F ) is defined by

‖·‖RSdetH•(M,F ) = |·|HodgedetH•(M,F )τRS(M,F ). (4.10)

One might ask whether the Ray-Singer metric is also a topological invariant. Provided the di-
mension of M is odd, then τRS(M,F ) is independent of the metric. Ray and Singer originally
proved this for the case where F is the associated bundle to an orthogonal representation of the
fundamental group of M , ρ : π1(M) → O(m), [RS71, Theorem 2.1]. However, their proof
immediately generalizes to the case where F is the associated bundle to any representation of
M . This is stated formally in the following theorem.
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Theorem 4.1.2. Suppose that n is odd. Then τRS(M,F ) is independent of the metrics gTM

and gF .

Of course we still assume that gF is chosen so that the induced metric on detF is flat.

When n is even, it is not generally true that τRS(M,F ) is independent of gTM and gF . How-
ever, if it assumed that the vector bundle F is obtained by an orthogonal representation of
π1(M), we have the following remarkable theorem, which was proved in [RS71, Theorem
2.3].

Theorem 4.1.3. Suppose that n is even, and F is the associated bundle to an orthogonal
representation of π1(M).

Then τRS(M,F ) = 1.

An analogous result also holds for Reidemeister torsion [Mil66, Section 10]. This fact, along
with the product formula proven in the next section, led Ray and Singer to conjecture that the
Ray-Singer torsion and Reidemeister torsion were equal.

4.2 A Product Formula for the Ray-Singer Torsion

Ray and Singer proved a product formula for the case of orthogonal representations, which was
generalised by Müller [Mül93]. For i = 1, 2, let Mi be a closed oriented Riemannian manifold
and let ρi : π1(Mi)→ GL(mi,R) be representations of the fundamental group with associated
flat bundles Fρi →Mi. Let hi be a metric on Fρi , and let

pi : M1 ×M2 →Mi (4.11)

be the usual projection map. AssumeM1×M2 has the product metric on its tangent space. Note
the flat bundle p∗1(Fρ1) ⊗ p∗2(Fρ2) → M1 ×M2 is the associated bundle to the representation
ρ1 ⊗ ρ2 : π1(M1)× π1(M2)→ GL(Rm1 ⊗Rm2) ∼= GL(m1m2,R), where we have extended
the homomorphisms ρi to act on π1(M1)× π1(M2) as follows,

ρ1(g, h) = ρ1(g), (4.12)

and
ρ2(g, h) = ρ2(h). (4.13)

Denote by h1 × h2 the product metric on the bundle p∗1(Fρ1)⊗ p∗2(Fρ2)→M1 ×M2.

The following theorem was originally stated in [Mül93], however the proof was obtained by
the author by following the proof of [RS71, Theorem 2.5].
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Theorem 4.2.1. With the notation above we have the equality

log τRS(M1 ×M2, p
∗
1(Fρ1)⊗ p∗2(Fρ2)) = χ(M2, F2) log τRS(M1, F1)

+ χ(M1, F1) log τRS(M2, F2).
(4.14)

Proof. Let
F = p∗1(Fρ1)⊗ p∗2(Fρ2)→M1 ×M2. (4.15)

Suppose ω1 ∈ Ωp(M1, F1) and ω2 ∈ Ωq(M2, F2) and consider the r = p + q form ω1 ∧
ω2, where we have lifted ω1 and ω2 to the spaces Ωp(M1 × M2, F ) and Ωq(M1 × M2, F )
respectively. It is known that such r-forms span Ωr(M1 ×M2, F ). Denote by dF the induced
differential on F . Since the differential commutes with pullbacks,

dF (ω1 ∧ ω2) = (dF1ω1) ∧ ω2 + (−1)pω1 ∧ (dF2ω2). (4.16)

Also, since we have chosen the product metric on M1 ×M2, we have

δF (ω1 ∧ ω2) = (δF1ω1) ∧ ω2 + (−1)pω1 ∧ (δF2ω2). (4.17)

By the definition of the Hodge Laplacian, ∆F = dF δF + δFdF ,

∆F (ω1 ∧ ω2) = (∆F1ω1) ∧ ω2 + ω1 ∧ (∆F2ω2). (4.18)

Therefore, if ω1 is an eigenform of ∆F1 with eigenvalue λ1, and ω2 is an eigenform of ∆F2

with eigenvalue λ2, then ω1 ∧ ω2 is an eigenform of ∆F with eigenvalue λ1 + λ2. Since the
forms ω1 ∧ ω2 span Ωr(M,F ), we may obtain all eigenforms of ∆F,r in this way.

LetNp(λ,M1) andNq(µ,M2) denote the multiplicites of the eigenvalues λ and µ of the Lapla-
cians ∆F1,p, ∆F2,q, respectively. The zeta function for ∆F,r for s ∈ C with Re(s) sufficiently
large is given by

ζF,r(s) = −Tr[(∆F,r)−s(id−PF,r)]

=

r∑
i=0

(Ni(0,M1)ζF2,r−i(s)) +

r∑
j=0

(Nj(0,M2)ζF1,r−j(s)) +

∑
λ,µ 6=0

∑
p+q=r

(−λ− µ)−sNp(λ,M1)Nq(µ,M2).

(4.19)

Now we consider the alternating sum in the definition of τRS(M1 ×M2, F ). Let n1 be the
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dimension of M1 and n2 be the dimension of M2. Then

n1n2∑
r=0

(−1)rrζF,r(s) =

n1n2∑
r=0

(−1)rr

(
r∑
i=0

Ni(0,M1)ζF2,r−i(s)

)

+

n1n2∑
r=0

(−1)rr

 r∑
j=0

Nj(0,M2)ζF1,r−j(s)


+

n1n2∑
r=0

(−1)rr

∑
λ,µ6=0

∑
p+q=r

(−λ− µ)−sNp(λ,M1)Nq(µ,M2)

 .

(4.20)

Suppose λ is a non-zero eigenvalue of ∆F1,p. Let Ep(λ,M1) ⊂ Ωp(M1, F1) denote the
eigenspace for λ. Let E′p(λ,M1) denote the subspace of closed forms in Ep(λ,M1) and
let N ′p(λ,M1) be the dimension of E′p(λ,M1). Similarly, let E′′p (λ,M1) be the subspace of
Ep(λ,M1) consisting of forms satisfying δF1ω = 0. Note that for any ω ∈ Ep(λ,M1),

ω = λ−1∆F1ω = λ−1(dF1δF1ω + δF1dF1ω). (4.21)

Clearly dF1δF1ω ∈ E′p(λ,M1) and δF1dF1ω ∈ E′′p (λ,M1). Thus Ep(λ,M1) is the direct
sum E′p(λ,M1) ⊕ E′′p (λ,M2). The map λ−1/2d also defines an isometry of E′′p (λ,M1) onto
E′p+1(λ,M1), with inverse λ−1/2δ. Thus if if N ′p(λ,M1) is the dimension of E′p(λ,M1), for
any p, then Np(λ,M1) = N ′p(λ,M1) +N ′p+1(λ,M1) and we get

n1∑
p=0

(−1)pNp(λ,M1) = 0. (4.22)

It follows from the definition of the zeta function that

n1∑
p=0

(−1)pζF1,p(s) = 0 (4.23)

for s ∈ C with Re(s) sufficiently large. Using a similar argument we may conclude that

n2∑
q=0

(−1)qζF2,q(s) = 0 (4.24)

once again, for s ∈ C with Re(s) sufficiently large. Now we will separately consider the terms
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of
∑n1n2

r=0 (−1)rrζF,r(s). Note that

n1n2∑
r=0

(−1)rr

(
r∑
i=0

Ni(0,M1)ζF2,r−i(s)

)

=

n1∑
i=0

(−1)iNi(0,M1)

 n2∑
j=0

(−1)j(j + i)ζF2,j(s)


=

n1∑
i=0

(−1)iNi(0,M1)

 n2∑
j=0

(−1)jjζF2,j(s) + i

n2∑
j=0

(−1)jζF2,j(s)


=

n1∑
i=0

(−1)iNi(0,M1)

 n2∑
j=0

(−1)jjζF2,j(s)

 .

(4.25)

By the Hodge theorem, Ni(0,M1) is the i-th Betti number of M1, so

n1n2∑
r=0

(−1)rr

(
r∑
i=0

Ni(0,M1)ζF2,r−i(s)

)
= χ(M1, F1)

 n2∑
j=0

(−1)jjζF2,j(s)

 . (4.26)

By an identical argument, we conclude that

n1n2∑
r=0

(−1)rr

(
r∑
i=0

Ni(0,M2)ζF1,r−i(s)

)
= χ(M2, F2)

 n1∑
j=0

(−1)jjζF1,j(s)

 . (4.27)

Consider the final term in
∑n1n2

r=0 (−1)rrζF,r(s). Note that∑
λ,µ6=0

∑
p+q=r

(−λ− µ)−sNp(λ,M1)Nq(µ,M2)

=
∑
λ,µ6=0

(−λ− µ)−s

(
n1∑
i=0

(−1)iiNi(λ,M1)

) n2∑
j=0

(−1)jNj(µ,M2)


+
∑
λ,µ 6=0

(−λ− µ)−s

(
n1∑
i=0

(−1)iNi(λ,M1)

) n2∑
j=0

(−1)jjNj(µ,M2)

 .

(4.28)

Both terms on the right hand side vanish, since

n1∑
i=0

(−1)iNi(λ,M1) =

n2∑
j=0

(−1)jNj(µ,M2) = 0, (4.29)
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provided λ, µ 6= 0. Thus

n1n2∑
r=0

(−1)rrζF,r(s) = χ(M2, F2)

 n1∑
j=0

(−1)jjζF1,j(s)


+ χ(M1, F1)

 n2∑
j=0

(−1)jjζF2,j(s)

 .

(4.30)

Of course, the zeta functions here are only defined for s ∈ C with Re(s) sufficiently large.
However, as discussed before, we may analytically continue them to meromorphic extensions
which are analytic at s = 0. Thus by taking the derivative with respect to s at s = 0 we obtain

n1n2∑
r=0

(−1)rrζ ′F,r(0) = χ(M2, F2)

 n1∑
j=0

(−1)jjζ ′F1,j(0)


+ χ(M1, F1)

 n2∑
j=0

(−1)jjζ ′F2,j(0)

 ,

(4.31)

which implies the claim.

4.3 A Quasi-Isomorphism

In this section, we present a quasi-isomorphism between the de Rham and Thom-Smale cochain
complexes, which was defined in [Lau92].

Let (gTM , f) be a generalized triangulation of M . By [Lau92], for each x ∈ Cr(f), W u(x) is
a submanifold with conical simplicialities, and thus integration over W u(x) is well defined.

Definition 4.3.1. Let P∞ : Ω•(M,F )→ C•(W u, F ) be defined by

P∞ω =
∑

x∈Cr(f)

W u(x)∗ ⊗
∫
Wu(x)

α. (4.32)

The following proposition was proven in [Lau92, Proposition 7].

Proposition 4.3.2. P∞ is a quasi-isomorphism, that is, the induced map P ∗∞ : H•dR(M,F )→
H•(C•(W u, F )) is an isomorphism.



Chapter 5

The Witten Laplacian

5.1 The Witten Deformation

Henceforth M is assumed to be odd dimensional, so we can choose the metrics freely without
affecting the Ray-Singer torsion. Since the Milnor metric is independent of the choice of Morse
function f , we will assume that (gTM , f) is a generalized triangulation of M .

Let dFt = e−tfdF etf and δFt = etfδF e−tf . Then δFt is the formal adjoint of dFt with respect
to the inner product on Ω•(M,F ),

〈α, β〉 =

∫
M
〈α ∧ ∗β〉F . (5.1)

Define ∆f,t = dFt δ
F
t + δFt d

F
t . The operator ∆f,t was introduced by Witten [Wit82] and is

known as the Witten Laplacian. Denote by ∆i
f,t the restriction of ∆f,t to Ωi(M,F ). Let

τRS(f, t) be the Ray-Singer torsion as before, however we replace the Hodge Laplacian ∆
with the Witten Laplacian ∆f,t.

It turns out that τRS(f, t) agrees with τRS(M,F ). To see this, we will show that τRS(f, t)
is actually the Ray-Singer torsion computed with a particular metric, and then conclude by
considering the metric independence of the Ray-Singer torsion.

We will now conformally scale the metric on F . For t ≥ 0, let gFt be the smooth metric on F
defined as

gFt = e−2tfgF . (5.2)

Using gTM and gFt , we may define another inner product on Ω•(M,F ), 〈·, ·〉Ω•(M,F ),t. Let
δ′Ft be the adjoint of dF with respect to the inner product 〈·, ·〉Ω•(M,F ),t. Then we see that δ′Ft

37
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satisfies the formula
δ′Ft = e2tfδF e−2tf . (5.3)

Let ∆′f,t = dF δ′Ft +δ′Ft d
F be the Hodge Laplacian associated to the inner product 〈·, ·〉Ω•(M,F ),t.

Then
∆f,t = dFt δ

F
t + δFt d

F
t

= e−tfdF e2tfδF e−tf + etfδF e−2tfdF etf

= e−tf (dF e2tfδF e−2tf + e2tfδF e−2tfdF )etf

= e−tf∆′f,te
tf .

(5.4)

When computing the determinant, e−tf cancels etf , so for each q, det’ ∆q
f,t = det’ ∆′qf,t. Thus

τRS(f, t) is equal to τRS(M,F ). In particular,

‖·‖RSdetH•(M,F ) = |·|HodgedetH•(M,F )τRS(f, t). (5.5)

To conclude this section, we will expand the Witten Laplacian to obtain a formula in terms of
∆ and t. Let ω ∈ Ω•(M). Then

dtω = e−tfdetfω

= e−tf (etfdω + tetfdf ∧ ω)

= (d+ tdf∧)ω.

(5.6)

Thus for any ω1, ω2 ∈ Ω•(M,F ),

〈δtω1, ω2〉 = 〈ω1, dtω2〉
= 〈ω1, dω2〉+ 〈ω1, tdf ∧ ω2〉
= 〈δω1, ω2〉+ 〈tι∇fω1, ω2〉
= 〈(δ + tι∇f )ω1, ω2〉,

(5.7)

where we have used the fact that ιX = (X∧)∗ for any vector field X . We have δt = δ + tι∇f
and

∆t = dtδt + δtdt

= (d+ tdf∧)(δ + tι∇f ) + (δ + tι∇f )(d+ tdf∧)

= dδ + tdf ∧ δ + tdι∇f + t2df ∧ ι∇f + δd+ tι∇fd+ tδdf ∧+t2ι∇fdf∧
= (dδ + δd) + t2(df ∧ (ι∇f ) + ι∇f (df∧))

+ t((ι∇fd+ dι∇f ) + (df ∧ δ + δdf∧))

= ∆ + t2(df ∧ (ι∇f ) + ι∇f (df∧)) + t(L∇f + L∗∇f )

= ∆ + th+ t2(df ∧ (ι∇f ) + (ι∇fdf)− df ∧ (ι∇f ))

= ∆ + th+ t2ι∇fdf

= ∆ + th+ t2 ‖df‖ ,

(5.8)
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where h = L∇f + L∗∇f , and L∇f is the Lie derivative with respect to∇f .

5.2 The Spectrum of the Witten Laplacian

In this section, we will prove the spectral gap theorem, which will allow us to factorize the
Ray-Singer torsion. Here we follow [Bur+96, Section 5].

For n ≥ 1, k ∈ R, let hk : Rn → R be the smooth function defined by

hk(x) = k − 1

2

k∑
i=1

|xi|2 +
1

2

n∑
i=k+1

|xi|2. (5.9)

Then hk is a self-indexing Morse function with one critical point of index k at x = 0.

Let ∆q : Ωq(Rn) → Ωq(Rn) be the Laplacian on q-forms on Rn and let ∆q
hk,t

be the Witten
Laplacian associated to hk. By [BZ92, Proposition 8.2], ∆q

hk,t
takes the form

∆q
hk,t

= ∆q + t2|x|2 − t(n− 2k) + 2t(N+
q,k −N

−
q,k) (5.10)

where N+
q,k is defined by

N+
q,k(dxi1 ∧ · · · ∧ dxiq) = |{j | k + 1 ≤ ij ≤ n}|dxi1 ∧ · · · ∧ dxiq (5.11)

and N−q,k = q id−N+
q,k.

For t ∈ R, let ωq,t ∈ Ωq(Rn) be the Gaussian q-form defined by

ωq,t(x) = (t/π)n/4e−t|x|
2/2dx1 ∧ · · · ∧ dxq. (5.12)

For η > 0, let νη : R→ [0, 1] be a smooth function so that νη(x) = 1 for x ∈ (−∞, η/2) and
νη(y) = 0 for y ∈ (η,∞). For some ε > 0, which will be chosen later, let ψ̃q,t ∈ Ωq(Rn) be
defined by

ψ̃q,t(x) = ‖νε(|x|)ωq,t‖−1
Ωq(Rn)νε(|x|)ωq,t(x) (5.13)

Now suppose that F is a flat vector bundle over Rn equipped with a Euclidean metric gF . We
may consider ∆q

hk,t
to be an operator acting on Ωq(Rn, F ) by letting it act trivially on F . The

following proposition is proved in [Bur+96, Section 5, (HO1), (HO3)].

Proposition 5.2.1. The operators ∆q
hk,t

are non-negative, self-adjoint, elliptic operators with
the following two properties.



40 CHAPTER 5. THE WITTEN LAPLACIAN

1. spec(∆q
hk,t

) is discrete and contained in 2tZ≥0.

2. If {v1, ..., vm} is an orthonormal basis of F , then ωq,t,i = ωq,t ⊗ vi forms a basis for
ker ∆q

hq ,t
and ψq,t,i = ψ̃q,t ⊗ vi is an orthonormal basis for a subspace of ker ∆q

hq ,t
.

The following estimates are also needed to prove the spectral gap theorem.

Proposition 5.2.2. There exists constants C0, C, t0 > 0 which depend on ε so that for any
x ∈ Rn

|∆q
hq ,t

ψq,t,i(x)| ≤ C0e
−Ct, (5.14)

for t ≥ 0,
〈∆q

hk,t
ψq,t,i, ψq,t,i〉Ωq(Rn,F ) ≥ 2t|q − k|, (5.15)

and for ω ∈ Ωq(Rn, F ) with compact support orthogonal to the subspace generated by ψq,t,i,

〈∆q
hq ,t

ω, ω〉Ωq(Rn,F ) ≥ Ct‖ω‖2Ωq(Rn,F ). (5.16)

Proof. First, notice that

(N+
q,k −N

−
q,k)(dx1 ∧ · · · ∧ dq) = nq,kdx1 ∧ · · · ∧ dxq (5.17)

where nq,k = −q if k ≥ q and nq,k = q − 2k if k < q. Thus, since ∆ = −
∑n

i=1 ∂
2
xi

(∆ + t2|x|2 − t(n− 2k) + 2tnq,k)e
−t|x|2/2 = 2t|q − k|e−t|x|2/2. (5.18)

Also,

∆(νε(|x|)e−t|x|
2/2) = e−t|x|

2/2∆(νε(|x|))− 2
n∑
i=1

∂xiνε(|x|)∂xie−t|x|
2/2

+ νε(|x|)∆(e−t|x|
2/2).

(5.19)

To prove the first estimate set k = q and conclude from (5.18), (5.19) that

|(∆ + t2|x|2 − t(n− 2k) + 2tnq,q)(νε(|x|)e−t|x|
2/2)|

≤
∣∣∣− 2

n∑
i=1

∂xi(νε(|x|)e−t|x|
2/2)

∣∣∣+
∣∣∣− n∑

i=1

∂2(νε(|x|))e−t|x|
2/2
∣∣∣

≤ |ν̇ε(|x|)|2t|x|e−t|x|
2/2 + |ν̇(|x|)|n− 1

|x|
e−t|x|

2/2 + |ν̈(|x|)|e−t|x|2/2

(5.20)
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where ν̇ε(t) = d
dtνε(t) and ν̈ε(t) = d2

dt2
νε(t). Since the support of both ν̇ε and ν̈ε are contained

in [ε/2, ε], we may conclude that

|(∆ + t2|x|2 − t(n− 2k) + 2tnq,q)(νε(|x|)e−t|x|
2/2)|

≤
(
‖ν̇ε‖L∞

(
2εte−tε

2/16 + 2
n− 1

ε
e−tε

2/16
)

+ ‖ν̈ε‖L∞e−tε
2/16

)
e−tε

2/16.
(5.21)

Now, to estimate β(t), notice that for t0 := (2/ε)2, one obtains for t ≥ t0,∫
Rn
νε(|x|)2e−t|x|

2
dx ≥

∫
|x|<ε/2

e−t|x|
2
dx ≥ C ′t−n/2

∫ 1

0
e−s

2
sn−1ds. (5.22)

Combining (5.21) and (5.22), we conclude that there exists C > 0 so that for t ≥ t0,

|∆q
hq ,t

ψq,t,i(x)| ≤ C
[
‖ν̇ε‖L∞

(
2εte−tε

2/16 +
n− 1

2

)
+ ‖ν̈ε‖L∞

]
t−n/2e−tε

2/16. (5.23)

From this, we obtain the first estimate.

To prove the second estimate, we integrate by parts to obtain∫
Rn
e−t|x|

2/2(∆νε)e
−t|x|2/2νεdx = −

n∑
i=1

∫
Rn
e−t|x|

2
νε∂

2
xiνεdx

=
n∑
i=1

∫
Rn

(∂xiνε)
2e−t|x|

2
dx

+
n∑
i=1

∫
Rn
νε
∂νε
∂xi

2
( ∂

∂xi
e−t|x|

2/2
)
e−t|x|

2/2dx.

(5.24)

By combining (5.19) and (5.24) we obtain∫
Rn

∆(νεe
−t|x|2/2)νεe

−t|x|2/2dx

=

∫
Rn

( n∑
i=1

(∂xiνε)
2e−t|x|

2
+ ν2

ε∆(e−t|x|
2/2)e−t|x|

2/2
)
dx.

(5.25)

By combining (5.18) and (5.25) we obtain∫
Rn

(∆ + t2|x|2 − t(n− 2k) + 2tnq,k)(νεe
−t|x|2/2) · (νεe−t|x|

2/2)dx

=

∫
Rn

(
2t|q − k|ν2

ε e
−t|x|2 +

n∑
i=1

(∂xiνε)
2e−t|x|

2
)
dx

≥ 2t|q − k|
∫
Rn

(νε)
2e−t|x|

2
dx.

(5.26)
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By taking into account the normalization factor β(t), we obtain

〈∆q
hk,t

ψq,t,i, ψq,t,i〉Ωq(Rn,F ) =

∫
Rn(∆ + t2|x|2 − t(n− 2k) + 2tnq,q)(νεe

−t|x|2/2) · (νεe−t|x|
2/2)dx∫

Rq(νε)
2e−t|x|2dx

≥ 2t|q − k|,
(5.27)

which proves the second estimate.

To prove the final estimate, it suffices to consider ω ∈ Ωq(Rn, F ) of the form ω = φdxi1 ∧
· · · ∧ dxiq ⊗ v with v ∈ F and φ ∈ C∞(Rn,R) with compact support. We need to show that
there exists t0 and C0 so that for any φ ∈ C∞(Rn,R) with compact support satisfying∫

Rn
φ(x)νε(|x|)e−t|x|

2/2dx = 0, (5.28)

the following estimate holds∫
Rn

(∆ + t2|x|2 − tn)φ(x)2dx ≥ C0t

∫
Rn
|φ(x)|2dx. (5.29)

To prove this, consider the function φ2 = φ− φ1, where

φ1(x) =

∫
Rn φ(x)e−t|x|

2/2dx∫
Rn e

−t|x|2dx
, (5.30)

so φ2 is the orthogonal projection of φ onto e−t|x|
2/2. Then (∆ + t2|x|2 − tn)φ1 = 0, and

due to the properties of the spectrum of the Witten Laplacian, spec(∆ + t2|x|2 − tn) ⊆ tZ≥0.
Hence ∣∣∣ ∫

Rn
(∆ + t2|x|2 − tn)φ(x)2dx

∣∣∣ ≥ ∣∣∣ ∫
Rn

(∆ + t2|x|2 − tn)φ2(x)2dx
∣∣∣

≥ t
∫
Rn
|φ2(x)|2dx

= t
(∫

Rn
|φ(x)|2dx−

∫
Rn
|φ1(x)|2dx

)
.

(5.31)

It remains to calculate an estimate for
∫
Rn |φ1(x)|2dx = |

∫
Rn φe

−t|x|2/2dx|2. By the Cauchy-
Schwarz inequality and the fact that∫

Rn
φ(x)νε(|x|)e−t|x|

2/2dx = 0, (5.32)
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we conclude that∣∣∣ ∫
Rn
φ(x)e−t|x|

2/2dx
∣∣∣2 =

∣∣∣ ∫
Rn
φ(x)(1− νε(|x|))e−t|x|

2/2dx
∣∣∣2

≤
∫
Rn
|φ(x)|2dx

∫
Rn

(1− νε(|x|))2e−t|x|
2
dx.

(5.33)

Also, with t ≥ (2/ε)2 and t ≥ t0,∫
Rn

(1− νε(|x|))2e−t|x|
2
dx ≤

∫
|x|≤ ε

2

e−t0|x|
2 ≤ Ct−n/20

∫ ∞
1

e−s
2
sn−1ds. (5.34)

Using (5.34), we may choose t0 ≥ (2/ε)2 sufficiently large so that∫
Rn

(1− νε(|x|))2e−t|x|
2 ≤ 1/2. (5.35)

Then by combining (5.31), (5.33), and (5.35) we see that for t ≥ t0,∫
Rn

(∆ + t2|x|2 − tn)φ(x)2dx ≥ t

2

∫
Rn
|φ(x)|2dx (5.36)

which concludes the proof.

Before we continue, we will identify a sufficiently small neighborhood of each critical point
x ∈ Cr(f) with an open ball in Rn, so we may utilize Theorem 5.2.2 in the setting of a general
manifold M with a real vector bundle F .

For all q, choose an ε > 0 sufficiently small so that for each x ∈ Crq(f), BM (x, 4ε) are
pairwise disjoint and BM (x, 3ε) ⊆ Ux, where Ux is the neighborhood described in Definition
3.3.1. For each z ∈ Ux, we will identify the fibers Fz and Fx by parallel transport. Fix once
and for all a basis for each fiber Fx. Then we can naturally identify forms ω ∈ Ωq(M,F )
with support in Ux with forms in Ωq(Rn, F ). In this way, each ψq,t,i ∈ Ωq(Rn, F ) can be
identified with a differential form ψx,t,i ∈ Ωq(M,F ). The forms ψx,t,i are orthonormal, and
satisfy Theorem 5.2.2

Now we are ready to prove the spectral gap theorem.

Theorem 5.2.3. There exist constants C1, C2, t0 > 0 so that for t ≥ t0 and 0 ≤ q ≤ n,
spec(∆q

f,t) ⊆ [0, e−tC1 ] ∪ [C2t,∞).

Proof. Each ∆q
f,t is non-negative, so it suffices to show that spec(∆q

f,t) ∩ (e−tC1 , C2t) = ∅.
The proof is completed in two steps.
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In the first step, we will prove that there exists some constants t0, C1, C2 > 0 so that for each
t ≥ t0 there exists a pair of orthogonal closed subspaces of the L2 completion of Ωq(M,F ),
W1 and W2 with W1 ⊂ Ωq(M,F ), which satisfy the following properties:

1. W1 ∩W2 = 0.

2. W1 +W2 = Ωq(M,F ).

3. 〈∆q
f,tω, ω〉Ωq(M,F ) ≤ e−tC1〈ω, ω〉Ωq(M,F ) for all ω ∈W1.

4. 〈∆q
f,tω, ω〉Ωq(M,F ) ≥ C2t〈ω, ω〉Ωq(M,F ) for all ω ∈W2 ∩ Ωq(M,F ).

Then in the second step, we will prove the claim by contradiction using the results in the first
step.

We will start by proving the first step. Define W1 to be the subspace generated by the forms
ψx,t,i ∈ Ωq(M,F ), and define W2 to be the orthogonal complement of W1 in Ωq(M,F ). By
construction, the first two properties are satisfied.

W1 consists of q-forms of the form
∑

i,x∈Bq ax,t,iψx,t,i where ax,t,i : M → R is a smooth
function. By choosing a sufficiently small neighborhood of each critical point x ∈ Crq(f),
Ux, with appropriate local coordinates, ∆q

f,t coincides with ∆q
hq ,t

acting on Ωq(Rn, F ) when
restricted to Ux. So ∆q

f,t is C∞(M,R)-linear, and we may use Proposition 5.2.2 to obtain an
estimate. By choosing C,C1, t1 > 0 as in Proposition 5.2.2, we obtain for t ≥ t1,

〈∆q
f,tω, ω〉Ωq(M,F ) =

∑
i,x

〈ax,t,i∆q
f,tψx,t,i, ax,t,iψx,t,i〉Ωq(M,F )

≤
∑
i,x

‖ax,t,i‖2Ω0(M,F )‖∆
q
f,tψx,t,i‖Ωq(M,F )‖ψx,t,i‖Ωq(M,F )

≤ C
∑
i,x

‖ax,t,i‖2Ω0(M,F )e
−tC1

≤ C‖ω‖2Ωq(M,F )e
−tC1 .

(5.37)

By choosing a sufficiently large t0 ≥ t1, we have for t ≥ t0,

〈∆q
f,tω, ω〉Ωq(M,F ) ≤ ‖ω‖2Ωq(M,F )e

−tC1 = 〈ω, ω〉Ωq(M,F )e
−tC1 . (5.38)

Now we need to prove the fourth property. For any critical point x with a sufficiently small
neighborhood Ux, we will denote by χx : M → R a smooth bump function with support in
Ux defined by ν2ε, and define χ =

∑
x∈B χx. For ω ∈ W2 ∩ Ωq(M,F ), define ω1 = χω

and ω2 = (1 − χ)ω. Observe that by the construction of the forms ψx,t,i, the support of ω2
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is disjoint with the support of any element in W1. Therefore, both ω1 and ω2 are elements of
W2 ∩ Ωq(M,F ). Since ∆q

f,t is self adjoint,

〈∆q
f,tω, ω〉Ωq(M,F ) = 〈∆q

f,tω1, ω1〉Ωq(M,F )

+ 2〈∆q
f,tω1, ω2〉Ωq(M,F ) + 〈∆q

f,tω2, ω2〉Ωq(M,F ).
(5.39)

We will show that there exist positive constants t0,K1,K2,K3,K4 depending only on M,F
and ε so that for ω ∈W2 ∩ Ωq(M,F ) and t > t0 the following estimates hold:

〈∆q
f,tω2, ω2〉Ωq(M,F ) ≥ 〈∆qω2, ω2〉Ωq(M,F ) +K1t

2‖ω2‖2Ωq(M,F ) −K2t‖ω2‖2Ωq(M,F ), (5.40)

〈∆q
f,tω1, ω1〉Ωq(M,F ) ≥ K3t‖ω1‖2Ωq(M,F ), (5.41)

〈∆q
f,tω1, ω1〉Ωq(M,F ) ≥ 〈∆qω1, ω1〉Ωq(M,F ) −K2t‖ω1‖2Ωq(M,F ), (5.42)

and for any α > 0,

〈∆q
f,tω1, ω2〉Ωq(M,F ) ≥ −K4(1 + α−2)(‖ω1‖2Ωq(M,F ) + ‖ω2‖2Ωq(M,F ))

−K4α
2〈∆qω2, ω2〉Ωq(M,F ) −K4α

2〈∆qω1, ω1〉Ωq(M,F ).
(5.43)

Recall that
∆q
f,t = ∆q + t(Lq + L∗q) + t2‖∇f‖2Ωq(M,F ). (5.44)

To prove (5.40) choose K1 = infz∈M\
⋃
x Ux
|∇f(z)|2 and K2 =

∑
x∈M‖(Lq + L∗q)‖Ωq(M,F ).

The estimate then follows from (5.44).

To prove (5.41), we may note that the support of ω1 is contained in
⋃
x Ux and ω1 is orthogonal

to each ψx,t,i. Then (5.41) follows from Proposition 5.2.2 by setting K3 = C0.

(5.42) immediately follows from (5.44).

To prove (5.43), note that

|〈(Lq + L∗q)ω1, ω2〉Ωq(M,F ) ≤ K2|〈ω1, ω2〉Ωq(M,F )| = K2|〈ω1, ω2〉Ωq(M,F )|, (5.45)

and using the fact that the support of ω2 is disjoint with the neighborhoods Ux,

〈|∇f |2ω1, ω2〉Ωq(M,F ) ≥ K1〈χ(1− χ)ω, ω〉Ωq(M,F ) ≥ 0. (5.46)

Then conclude that

〈∆q
f,tω1, ω2〉Ωq(M,F ) = 〈∆qω1, ω2〉Ωq(M,F ) + t〈(Lq + L∗q)ω1, ω2〉Ωq(M,F )

+ t2〈|∇f |2ω1, ω2〉Ωq(M,F )

(5.47)
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may be used to estimate

〈∆q
f,tω1, ω2〉Ωq(M,F ) ≥ 〈∆qω1, ω2〉Ωq(M,F ) + (K1t

2 −K2t)〈ω1, ω2〉Ωq(M,F ). (5.48)

Since 〈ω, ω〉Ωq(M,F ) is real and nonnegative, for t > K2/K1

〈∆q
f,tω1, ω2〉Ωq(M,F ) ≥ 〈∆qω1, ω2〉Ωq(M,F ). (5.49)

Hence (5.43) follows from the fact that 2(‖ω1‖2Ωq(M,F ) + |ω2‖2Ωq(M,F )) ≥ ‖ω‖
2
Ωq(M,F ) and the

following proposition. We claim that there exists a positive constant K4 > 0 so that for any
α > 0,

〈∆qω1, ω2〉Ωq(M,F ) ≥ −K4(1 + α−2)‖ω‖2Ωq(M,F ) −K4α
2〈∆qω2, ω2〉Ωq(M,F )

−K4α
2〈∆qω1, ω1〉Ωq(M,F ).

(5.50)

To prove (5.50), recall that ∆q = dq−1δq−1 + δqdq, ω1 = χω, and ω2 = (1− χ)ω. Also recall
that δq−1 = −(−1)nq+n+1 ∗n−q+1 d

n−q∗q, where ∗k denotes the Hodge star operator acting
on k-forms. Then

〈∆qω1, ω2〉Ωq(M,F ) = 〈dω1, dω2〉Ωq(M,F ) + 〈d ∗ ω1, d ∗ ω2〉Ωq(M,F )

≥ A+B − ‖dχ ∧ ω‖2Ωq(M,F ) − ‖dχ ∧ ∗ω‖
2
Ωq(M,F )

+ 〈χdω, (1− χ)dω〉Ωq(M,F ) + 〈χd ∗ ω, (1− χ)d ∗ ω〉Ωq(M,F ),

(5.51)

where

A := 〈dχ ∧ ω, u(1− χ)dω〉Ωq(M,F ) + 〈dχ ∧ ∗ω, u(1− χ)d ∗ ω〉Ωq(M,F ),

B := −〈χdω, udχ ∧ ω〉Ωq(M,F ) − 〈χd ∗ ω, udχ ∧ ∗ω〉Ωq(M,F )

(5.52)

and u is the characteristic function of M \ suppχ. Since 〈χdω, (1− χ)dω〉Ωq(M,F ) and 〈χd ∗
ω, (1− χ)d ∗ ω〉Ωq(M,F ) are real and nonnegative,

〈∆qω1, ω2〉Ωq(M,F ) ≥ A+B − ‖dχ ∧ ω‖2Ωq(M,F ) − ‖dχ ∧ ∗ω‖
2
Ωq(M,F ). (5.53)

Consider the constant K5 = sup1≤k≤n‖Hk‖Ωq(M,F ), where Hk : Ωk(M,F ) → Ωk+1(M,F )
is the left exterior multiplication by dχ. Note that ‖Hk‖Ωq(M,F ) = ‖H∗k‖Ωq(M,F ), where H∗k
is the adjoint of Hk, and ‖ω‖Ωq(M,F ) = ‖∗ω‖Ωq(M,F ). Then

|A| ≤ K5‖ω‖Ωq(M,F )(‖(1− χ)dω‖Ωq(M,F ) + ‖(1− χ)d ∗ ω‖Ωq(M,F ))

≤ K5‖ω‖Ωq(M,F )(‖dω2‖Ωq(M,F ) + ‖dχ ∧ ω‖Ωq(M,F ) + ‖d ∗ ω2‖Ωq(M,F )

+ ‖dχ ∧ ∗ω‖Ωq(M,F ))

≤ K5‖ω‖Ωq(M,F )(‖dω2‖Ωq(M,F ) + ‖d ∗ ω2‖Ωq(M,F ) + 2K5‖ω‖Ωq(M,F ))

≤
√

2K5‖ω‖Ωq(M,F )〈∆qω2, ω2〉1/2Ωq(M,F ) + 2K2
5‖ω‖2Ωq(M,F ).

(5.54)
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Thus, for any α > 0, using the inequality bc ≤ (b/α)2 + (αc)2 where b, c ∈ R,

|A| ≤ (2K2
5 +K5α

−2)‖ω‖2Ωq(M,F ) + α2〈∆qω2, ω2〉Ωq(M,F ). (5.55)

An almost identical calculation yields

|B| ≤ (2K2
5 +K5α

−2)‖ω‖2Ωq(M,F ) + α2〈∆qω1, ω1〉Ωq(M,F ). (5.56)

Noting that A ≥ −|A| and B ≥ −|B|,

〈∆qω1, ω2〉Ωq(M,F ) ≥ A+B − ‖dχ ∧ ω‖2Ωq(M,F ) − ‖dχ ∧ ∗ω‖
2
Ωq(M,F )

≥ A+B − 2K2
5‖ω‖2Ωq(M,F )

≥ −2(2K2
5 +K5α

−2)‖ω‖2Ωq(M,F ) − α
2〈∆qω1, ω1〉Ωq(M,F )

− α2〈∆qω2, ω2〉Ωq(M,F ) − 2K2
5‖ω‖2Ωq(M,F ).

(5.57)

By choosing K4 sufficiently large we obtain the desired estimate (5.50), and thus (5.43).

To finish the first step, we will prove the fourth property given the estimates (5.40), (5.41),
(5.42), and (5.43). For any 0 ≤ γ ≤ 1, multiply (5.41) by 1− γ and multiply (5.42) by γ, and
then add them to obtain

〈∆q
f,tω1, ω1〉Ωq(M,F ) ≥ (1−γ)〈∆qω1, ω1〉Ωq(M,F )+t(γK3−(1−γ)K2)‖ω1‖2Ωq(M,F ). (5.58)

Combine (5.58) with (5.43), (5.40), and (5.39) to obtain for 0 < γ < 1, α > 0,

〈∆q
f,tω1, ω1〉Ωq(M,F ) ≥ (1− 2K4α

2)〈∆qω2, ω2〉Ωq(M,F ) + (1− γ − 2K4α
2)〈∆qω1, ω1〉Ωq(M,F )

+ (K1t
2 −K2t− 2K4(1 + α−2))‖ω2‖2Ωq(M,F )

+ (t(γK4 − (1− γ)K2))− 2K4(1 + α−2)‖ω1‖2Ωq(M,F ).

(5.59)
Proceed by choosing 0 < γ < 1 so that C6 := γK3 − (1 − γ)K2 > 0. Then choose α > 0
sufficiently small so that 1− γ − 2C4α

2 > 0. We obtain

〈∆q
f,tω, ω〉Ωq(M,F ) ≥ (K1t

2 −K2t− 4K4(1 + α−2))‖ω2‖2Ωq(M,F )

+ (tK6 − 4K4(1 + α−2))‖ω1‖2Ωq(M,F ).
(5.60)

If necessary, we may alter our constants K1,K2,K3,K4, so the inequality 2‖ω1‖2Ωq(M,F ) +

2‖ω2‖2Ωq(M,F ) ≥ ‖ω‖
2
Ωq(M,F ) can be used to obtain for some C2 > 0

〈∆q
f,tω, ω〉Ωq(M,F ) ≥ (K1t

2 −K2t− 4K4(1 + α−2))‖ω2‖2Ωq(M,F )

+ (tK6 − 4K4(1 + α−2))‖ω1‖2Ωq(M,F )

≥ C2t〈ω, ω〉Ωq(M,F ).

(5.61)
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This establishes the fourth property.

Now we will move on to the second step. Assume for the purposes of obtaining a contradiction
that there exists some 0 ≤ q ≤ n, t ≥ t0 and some µ ∈ R so that µ ∈ spec ∆q

f,t∩ (e−tC1 , C2t).
Then there exists a sequence (ui) = (ui)i∈Z>0 of unit eigenfunctions ui ∈ Ωq(M,F ) which
satisfies

‖∆q
f,tui − µui‖Ωq(M,F ) ≤

1

i
. (5.62)

Since Ωq(M,F ) ⊆ Ωq(M,F ) = W1 + W2, for each ui there exists some vi ∈ W1 and
wi ∈ W2 so that ui = vi + wi. Moreover, since each ui ∈ Ωq(M,F ), we may choose the
functions wi so that wi ∈W2 ∩ Ωq(M,F ). Then, since ∆q

f,t is self-adjoint,

〈∆q
f,tui, vi〉Ωq(M,F ) = 〈∆q

f,tvi, vi〉Ωq(M,F ) + 〈wi,∆q
f,tvi〉Ωq(M,F ), (5.63)

〈∆q
f,tui, wi〉Ωq(M,F ) = 〈∆q

f,tvi, wi〉Ωq(M,F ) + 〈wi,∆q
f,twi〉Ωq(M,F ). (5.64)

Also,
µ‖vi‖2Ωq(M,F ) = 〈µui, vi〉Ωq(M,F )

= 〈∆q
f,tui, vi〉Ωq(M,F ) − 〈∆

q
f,tui − µui, vi〉Ωq(M,F )

(5.65)

µ‖wi‖2Ωq(M,F ) = 〈µui, wi〉Ωq(M,F )

= 〈∆q
f,tui, wi〉Ωq(M,F ) − 〈∆

q
f,tui − µui, wi〉Ωq(M,F ).

(5.66)

Then,
µ‖vi‖2Ωq(M,F ) − 〈∆

q
f,tvi, vi〉Ωq(M,F ) + 〈∆q

f,tui − µui, vi〉Ωq(M,F )

= 〈wi,∆q
f,tvi〉Ωq(M,F ),

(5.67)

and similarly,

µ‖wi‖2Ωq(M,F ) − 〈∆
q
f,twi, wi〉Ωq(M,F ) + 〈∆q

f,tui − µui, wi〉Ωq(M,F )

= 〈∆q
f,tvi, wi〉Ωq(M,F ).

(5.68)

Note that 〈wi,∆q
f,tvi〉Ωq(M,F ) = 〈∆q

f,tvi, wi〉Ωq(M,F ). Therefore,

µ‖vi‖2Ωq(M,F ) − 〈∆
q
f,tvi, vi〉Ωq(M,F ) = −〈∆q

f,tui − µui, vi − wi〉Ωq(M,F )

+ µ‖wi‖2Ωq(M,F ) − 〈∆
q
f,twi, wi〉Ωq(M,F ).

(5.69)

Using
〈∆q

f,tvi, vi〉Ωq(M,F ) ≤ e−tC1〈vi, vi〉Ωq(M,F ), (5.70)

〈∆q
f,twi, wi〉Ωq(M,F ) ≥ C2t〈wi, wi〉Ωq(M,F ), (5.71)



5.2. THE SPECTRUM OF THE WITTEN LAPLACIAN 49

‖wi‖2Ωq(M,F ) = 1− ‖vi‖2Ωq(M,F ) ≤ 1, and

‖∆q
f,tui − µui‖Ωq(M,F ) ≤

1

i
, (5.72)

we obtain
(µ− e−tC1)‖vi‖2Ωq(M,F ) ≤

2

i
+ (µ− C2t)(1− ‖vi‖2Ωq(M,F )). (5.73)

Without a loss of generality, we may assume that limi→∞‖vi‖2Ωq(M,F ) = x2 exists. Then
x2 ≤ 1 and

(µ− e−tC1)x2 ≤ (µ− C2t)(1− x2). (5.74)

Note that (µ−e−tC1) ≥ 0, (µ−C2t)(1−x2) ≤ 0, and both (µ−e−tC1) and (µ−C2t)(1−x2)
cannot be simultaneously 0, which is a contradiction.

Using Theorem 5.2.3, we may factorize the Ray-Singer torsion into small and large compo-
nents.

For t sufficiently large, let Ωsm,t = Ωsm,t(M,F ) ⊆ Ω•(M,F ) be the subspace spanned by
eigenforms of ∆f,t with eigenvalues in spec(∆f,t)∩[0, 1]. Similarly, let Ωla,t = Ωla,t(M,F ) ⊆
Ω•(M,F ) be the subspace spanned by eigenforms of ∆f,t with eigenvalues in [1,∞). Both
Ωla,t and Ωsm,t inherit the inner product 〈·, ·〉Ω•(M,F ). We will also denote byPsm,t : Ω•(M,F )→
Ωsm,t the orthogonal projection with respect to 〈·, ·〉Ω•(M,F ), and define Pla,t = id−Psm,t.

Let ∆sm,f,t denote the restriction of ∆f,t to Ωsm,t, and let ∆la,f,t denote the restriction of ∆f,t

to Ωla,t.

For each q, let Ωq
sm,t = Ωsm,t ∩ Ωq(M,F ) and Ωq

la,t = Ωla,t ∩ Ωq(M,F ). Finally, let ∆q
sm,f,t

denote the restriction of ∆sm,f,t to Ωq
sm,t and let ∆q

la,f,t denote the restriction of ∆la,f,t to Ωq
la,t.

Let τRS,la(f, t) and τRS,sm(f, t) denote the Ray-Singer torsion computed with the determi-
nant of ∆la,f,t and ∆sm,f,t respectively. Since for each q, spec(∆q

f,t) = spec(∆q
la,f,t) ∪

spec(∆sm,f,t), we have

τRS = τRS(f, t) = τRS,la(f, t)τRS,sm(f, t). (5.75)

Thus we may treat τRS,sm(f, t) and τRS,la(f, t) separately, which we will do in subsequent
chapters.
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Chapter 6

Asymptotic Expansion of the Small
Eigenvalues

The purpose of this chapter is to establish the following theorem.

Theorem 6.0.1. Suppose that the pair (gTM , f) is a generalized triangulation. Then as t→∞
we have

log
|·|HodgedetH•(M,F ) τRS,sm(f, t)

‖·‖MdetH•(M,F )

= −t rank(F ) TrCr(f)
s [f ] +

1

2
χ̃′(F ) log

(
t

π

)
+O(1), (6.1)

where Tr
Cr(f)
s [f ] =

∑
x∈Cr(f)(−1)ind(x)f(x) and χ̃′(F ) = rank(F )

∑
x∈Cr(f)(−1)ind(x) ind(x).

Note that since we assumed f to be self indexing, rank(F ) Tr
Cr(f)
s [f ] = χ̃′(F ). From Theorem

6.0.1 we obtain the following corollary.

Corollary 6.0.2. As t→∞,

log τRS,la(f, t) = log
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

+ t rank(F ) TrCr(f)
s [f ]− 1

2
χ̃′(F ) log

(
t

π

)
+O(1).

(6.2)

Proof. Since τRS(M,F ) = τRS,la(f, t)τRS,sm(f, t), log τRS(M,F ) = log τRS,sm(f, t) +
log τRS,la(f, t), we have that

log
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

= log
|·|HodgedetH•(M,F ) τRS,sm(f, t)

‖·‖MdetH•(M,F )

+ log τRS,la(f, t). (6.3)

51
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Then adding log τRS,la(f, t) to both sides of (6.1) gives

log
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

= log τRS,la(f, t)− t rank(F ) TrCr(f)
s [f ]

+
1

2
χ̃′(F ) log

(
t

π

)
+O(1).

(6.4)

Rearranging (6.4) gives (6.2).

Remark 6.0.3. Theorem 6.0.1 was originally proven in [BZ92, Theorem 7.6] using the results
of Helffer and Sjöstrand [HS84], [HS85b], [HS85a], [HS85c], and instantons. Later Bismut
and Zhang proved Theorem 6.0.1 for the G-equivariant case while avoiding using instantons in
[BZ94]. We will take the latter approach while assuming G = {1} and adjusting our notation
accordingly.

6.1 An Isometry From the Morse Complex to the de Rham Com-
plex

Recall that M is a closed Riemannian manifold manifold of odd dimension and F → M is
a real flat vector bundle. Also, gTM and gF are metrics on TM and F so that gF induces a
flat metric on detF . Finally, recall that gTM and gF induce the inner product 〈·, ·〉Ω•(M,F ) on
Ω•(M,F ). Additionally, recall that f : M → R is a smooth function.

Definition 6.1.1. The Dirac operator is defined by

D = dF + δF , (6.5)

and the deformed Dirac operator is defined by

Df,t = dFt + δFt . (6.6)

Note that D2 = ∆ and D2
f,t = ∆f,t.

Let x ∈ Crk(f). For any ε > 0, let BM (x, ε) be the ball of radius ε centered at x ∈ M ,
where the distance function is determined by gTM . Note that for some ε > 0 small enough,
BM (x, ε) ⊆ Ux, so we may use the preferred coordinates described in Definition 3.3.1. We
will also choose ε > 0 small enough so the results of Chapter 5 apply.
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Note that Rk ∼= TxW
u(x) inherits an orientation from the orientation of W u(x). Let ρx be

the volume form on TxW u(x). Without a loss of generality assume that the coordinate chart
(y1, ..., yn) is chosen so that

ρx = dy1 ∧ · · · ∧ dyk. (6.7)

Let µ : M → R be a bump function so that µ(y) = 1 for y ∈ BM (x, ε/2) and so that µ
vanishes outside of BM (x, ε).

Set
αt =

∫
M
µ2(y) exp(−tdist(x, y)2)ω, (6.8)

where ω is the volume form determined by the metric gTM and dist is the distance function
determined by the metric gTM . In the case where M is not orientable, we may still perform
this integration by utilising densities.

As we will see, αt is a normalization factor which will ensure that the map we define next is
an isometry.

Since αt is the integral of a Gaussian function multiplied by the bump function µ2, there exists
some c > 0 so that as t→∞,

αt =

(
π

t

)n/2
+O(e−ct). (6.9)

Definition 6.1.2. For x ∈ B, t > 0, let Jt be the linear map from C•(W u, F ) into Ω•(M,F )
such that if x ∈ B, h ∈ Fx, y ∈ BM (x, ε),

Jt(W
u(x)∗ ⊗ h)(y) =

µ(y)

(αt)1/2
exp

(
−t dist(x, y)2

2

)
ρx ⊗ h. (6.10)

Proposition 6.1.3. Jt is an isometry from C•(W u, F ) into Ω•(M,F ) which preserves the
Z-grading.

Proof. If x ∈ Crq, W u(x)∗ ∈ Cq(W u, F ) and ρx ∈ Ωq(M,F ), by definition Jt(W u(x)∗ ⊗
h) ∈ Ωq(M,F ). So Jt preserves the Z-grading.

To show that Jt is an isometry, recall that the inner product on C•(W u, F ) is determined
by the elements W u(x)∗ ∈ Cq(W u), where x ∈ Cr(f), and the metric on F . Suppose
that x1, x2 ∈ Cr(f) so that x1 6= x2 and let µ1, µ2 be the bump functions associated to
BM (x1, ε1/2) and BM (x2, ε2/2) respectively. Then the support of µ1 and µ2 are disjoint,
since the sets BM (x1, ε1/2), BM (x2, ε2/2) were assumed to be disjoint. Therefore

〈Jt(W u(x1)∗ ⊗ h1), Jt(W
u(x2)∗ ⊗ h2)〉Ω•(M,F ) = 0 (6.11)
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for any h1, h2 ∈ F .

Now suppose x ∈ Cr(f), and h ∈ F so that h is a unit vector. Then

‖Jt(W u(x)∗ ⊗ h)‖2Ω•(M,F )

=

∫
M

(
µ(y)

(αt)1/2
exp

(
−tdist(x, y)2

2

)
ρx

)
∧ ?
(

µ(y)

(αt)1/2
exp

(
−t dist(x, y)2

2

)
ρx

)
=

∫
M

µ2(y)

αt
exp(−tdist(x, y)2)ω

=
1

αt

∫
M
µ2(y) exp(−tdist(x, y)2)ω

=
αt
αt

= 1.

(6.12)
So Jt maps the orthonormal basis of C•(W u, F ) to orthonormal vectors in Ω•(M,F ).

Definition 6.1.4. Let ẽt : C•(W u, F )→ Ωsm,t be given by

ẽt = Psm,tJt. (6.13)

We may intuitively consider ẽt to be the isometry Jt whose codomain has been restricted to
the eigenspace spanned by eigenforms corresponding to small eigenvalues of ∆f,t. We will
eventually show that for sufficiently large t, the map etf ẽt is actually an isometric isomorphism
which preserves the Z-grading. To do so, we need the following theorem.

Theorem 6.1.5. There exists c > 0 such that as t→ +∞, for any s ∈ C•(W u, F ),

‖(ẽt − Jt)s‖Ω•(M,F ) = O(e−ct)‖s‖C•(Wu,F ) (6.14)

uniformly on M .

Proof. It sufficies to consider the case where s = W u(x)∗ ⊗ h where x ∈ B, h ∈ Fx. Note
‖s‖C•(Wu,F ) = ‖h‖Fx . Set

Jt,xh = Jt(W
u(x)∗ ⊗ h). (6.15)

Let S be the oriented circle of center 0 and radius 1/2 in C. By Proposition 5.2.3, for t ≥ 0
large enough, for each λ ∈ spec(∆sm,f,t) we have that |λ| < 1

2 . So we may consider the Riesz
projector:

Psm,t =
1

2πi

∫
S

(λ−∆f,t)
−1dλ. (6.16)
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Also, if λ ∈ C∗, then

(λ−∆f,t)
Jt,xh

λ
− Jt,xh = −

∆f,tJt,xh

λ
, (6.17)

so
Jt,xh

λ
− (λ−∆f,t)

−1Jt,xh = −(λ−∆f,t)
−1 ∆f,tJt,xh

λ
. (6.18)

Since µ(y) = 1 for y ∈ BM (x, ε/2), by [BZ92, Proposition 8.3]

(∆f,tJt,xh)(y) = 0 (6.19)

for y ∈ BM (x, ε/2).

For p ≥ 0, let Lp,2 be the p-th Sobolev space of sections of Ω•(M,F ) over M equipped with
the Sobolev norm ‖·‖Lp,2 . Using (6.19), for any p ≥ 0, there is some c > 0 such that as
t→ +∞,

‖∆f,tJt,xh‖Lp,2 = O(e−ct)‖f‖Fx . (6.20)

Now take q ≥ 1. Since ∆ is elliptic, by elliptic regularity there exists C1 > 0 so that if
s ∈ Ω•(M,F ), then

‖s‖L2q,2 ≤ C1(‖∆s‖L2q−2,2 + ‖s‖L0,2). (6.21)

By expanding the Witten Laplacian we see that

∆f,t = ∆ + t[D, ĉ(∇f)] + t2|∇f |2. (6.22)

The principal symbol of D anticommutes with ĉ(∇f), so [D, ĉ(∇f)] is an even operator of
order 0. Using (6.22), there exists C2 > 0 such that for λ ∈ S, t ≥ 1, s ∈ Ω•(M,F ),

‖(λ−∆f,t + ∆)s‖L2q−2,2 = ‖(λ−∆− t[D, ĉ(∇f)]− t2|∇f |+ ∆)s‖L2q−2,2

= ‖(λ− t[D, ĉ(∇f)]− t2|∇f |)s‖L2q−2,2

=

∥∥∥∥∥
(

1

t2
λ− 1

t
[D, ĉ(∇f)]− |∇f |

)
t2s

∥∥∥∥∥
L2q−2,2

≤ C2t
2‖s‖L2q−2,2 ,

(6.23)

where the last inequality holds by the fact that λ, [D, ĉ(∇f)], and |∇f | all act by multiplication
of some constant, and are thus all bounded by some constant C2 > 0.

Using (6.21) and (6.23), we have that for λ ∈ S, t ≥ 1, s ∈ Ω•(M,F ),

‖s‖L2q,2 ≤ C1(‖∆s‖L2q−2,2 + ‖s‖L0,2)

≤ C1(‖(λ−∆f,t + ∆)s‖L2q−2,2 + ‖(λ−∆f,t)s‖L2q−2,2 + t2‖s‖L2q−2,2)

≤ C1(‖(λ−∆f,t)s‖L2q−2,2 + C2t
2‖s‖L2q−2,2 + t2‖s‖L2q−2,2)

≤ C1((C2 + 1)‖(λ−∆f,t)s‖L2q−2,2 + (C2 + 1)t2‖s‖L2q−2,2)

≤ C3(‖(λ−∆f,t)s‖L2q−2,2 + t2‖s‖L2q−2,2),

(6.24)
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where in the final inequality we have set C3 = C1(C2 + 1) > 0.

Using (6.24), there exists C4 > 0 such that for λ ∈ S, t ≥ 1, s ∈ Ω•(M,F ),

‖s‖L2q,2 ≤ C3(‖(λ−∆f,t)s‖L2q−2,2 + t2‖s‖L2q−2,2)

≤ C3(‖(λ−∆f,t)s‖L2q−2,2 + t2A1(‖(λ−∆f,t)s‖L2q−4,2 + t2‖s‖L2q−4,2))
(6.25)

for some constant A1 > 0. Proceeding inductively we obtain

‖s‖L2q,2 ≤ C3‖(λ−∆f,t)s‖L2q−2,2 + C3A1t
2‖(λ−∆f,t)s‖L2q−4,2 + · · ·

+ C3A1...Aq−1t
2q−2‖(λ−∆f,t)s‖L0,2 + C3A1...Aq−1t

2q‖s‖L0,2

≤ C4t
2q(‖(λ−∆f,t)s‖L2q−2,2 + ‖s‖L0,2),

(6.26)

where C4 > 0.

By Theorem 5.2.3, for t ≥ 1 large enough, if λ ∈ S, then λ /∈ spec(∆f,t). In particular, there
exists some C5 > 0 such that for t ≥ 1 large enough, λ ∈ S, and s ∈ Ω•(M,F ),

‖(λ−∆f,t)
−1s‖L0,2 ≤ C5‖s‖L0,2 . (6.27)

By (6.26), (6.27), for λ ∈ S, t ≥ 1, s ∈ Ω•(M,F ),

‖(λ−∆f,t)
−1s‖L2q,2 ≤ C4t

2q(‖s‖L2q−2,2 + ‖(λ−∆f,t)
−1s‖L0,2)

≤ C4t
2q(‖s‖L2q−2,2 + C5‖s‖L0,2)

≤ C6t
2q‖s‖L2q−2,2 ,

(6.28)

where C6 > 0.

Using (6.20) and (6.28), for t ≥ 1 large enough,

‖(λ−∆f,t)
−1∆f,tJt,xh‖L2q,2 ≤ C6t

2q‖∆f,tJt,xh‖L2q−2,2

= C6T
2qO(e−ct)‖h‖Fx

= O(e−ct)‖h‖Fx

(6.29)

uniformly in λ ∈ S. By choosing q ≥ n/2, and considering the Sobolev embedding theorem
for q-forms, we obtain from (6.29)

‖(λ−∆f,t)
−1∆f,tJt,xh‖Ω•(M,F ) ≤ O(e−ct)‖h‖Fx (6.30)

uniformly on M . Now, note that

(ẽt − Jt)s = (Psm,tJt − Jt)s
= (Psm,t − 1)Jts

=
1

2πi

(∫
S

(λ−∆f,t)
−1dλ−

∫
S
λ−1dλ

)
Jts

=
1

2πi

(∫
S

λ(λ−∆f,t)
−1 − 1

λ
dλ
)
Jts

(6.31)
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Since Jts has no dependence on λ,

(ẽt − Jt)s =
1

2πi

∫
S

1

λ
(λ(λ−∆f,t)

−1Jt,xh− Jt,xh)dλ

=
1

2πi

∫
S

1

λ
(λ−∆f,t)

−1∆f,tJt,xhdλ

≤ 1

2πi

∫
S

1

λ
‖(λ−∆f,t)

−1∆f,tJt,xh‖Ω•(M,F )dλ

≤ 1

2πi

∫
S

O(e−ct)‖h‖Fx
λ

dλ

=
O(e−ct)‖h‖Fx

2πi

∫
S

1

λ
dλ

= O(e−ct)‖h‖Fx

(6.32)

Definition 6.1.6. For t ≥ 0, let et be the linear map from C•(W u, F ) into Ωi
sm,t,

et = etf ẽt. (6.33)

Let 〈·, ·〉Ωsm,t denote the inner product induced by 〈·, ·〉Ω•(M,F ),t on Ωsm,t. Finally, let e∗t be
the adjoint of et with respect to this inner product.

Theorem 6.1.7. There exists c > 0 such that as t→∞

e∗t et = id +O(e−ct). (6.34)

In particular, for t ≥ 0 large enough, et : C•(W u, F ) → Ωsm,t is an isometric isomorphism
of Z-graded vector spaces.

Proof. First we will prove that ẽt is an isomorphism. Let Xt = ẽt(C
•(M,F )) ⊂ Ωsm,t. We

will show that if u ∈ Ωsm,t is orthogonal to Xt with respect to 〈·, ·〉Ωsm,t , then u = 0. Recall
the differential forms ψx,t,i were defined in Chapter 5. Since Psm,t is an orthogonal projection,
it is self-adjoint so

〈ψx,t,i, u〉Ω•(M,F ) = 〈ψx,t,i, Psm,tu〉Ω•(M,F ) = 〈Psm,tψx,t,i, u〉Ω•(M,F ) = 0, (6.35)

since u was assumed to be orthogonal to Xt, and each Psm,tψx,t,i ∈ Xt. Thus, by Theorem
5.2.2,

〈∆f,tu, u〉Ω•(M,F ) ≥ Ct‖u‖2Ω•(M,F ). (6.36)
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However, u ∈ Ωsm,t, so it is the sum of eigenvectors with eigenvalues less than 1. Thus

〈∆f,tu, u〉Ω•(M,F ) ≤ ‖u‖2Ω•(M,F ). (6.37)

From the above inequalities we require ‖u‖2 = 0, so u = 0 as desired. Xt = Ωsm,t, so ẽt is an
isomorphism. Note that

〈ets, ets′〉Ωsm,t,t = 〈ẽts, ẽts′〉Ω•(M,F ). (6.38)

Using this, we may conclude that since ẽt is an isomorphism, et must be injective. To con-
clude that et is an isomorphism recall that for sufficiently large t, note that rank(Ωq

sm,t) =
rank(Cq(W u, F )).

Also, from Theorem 6.1.5, it follows that

e∗t et = 1 +O(e−ct) (6.39)

for some c > 0.

6.2 The Asymptotics of P∞,tet

Recall from Chapter 4 the linear map

P∞ : α ∈ Ω•(M,F ) 7→
∑
x∈B

W u(x)∗ ⊗
∫
W
u

(x)
α ∈ C•(W u, F ) (6.40)

is a quasi-isomorphism of complexes, which induces the identifications

H•(M,F ) ∼= H•dR(M,F ) ∼= H•(C•(W u, F )). (6.41)

Note that (Ωsm,t, d
F ) is a subcomplex of (Ω•(M,F ), dF ) which contains every harmonic form

in Ω•(M,F ). Therefore,

H•(Ωsm,t) ∼= ker ∆sm,f,t = ker ∆ ∼= H•dR(M,F ). (6.42)

The restriction of P∞ to Ωsm,t,

P∞,t : α ∈ Ωsm,t 7→ P∞α ∈ C•(W u, F ) (6.43)

is also a quasi-isomorphism of complexes, which induces the canonical identificiation

H•(Ωsm,t) ∼= H•(C•(W u, F )) ∼= H•(M,F ). (6.44)
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Definition 6.2.1. Let F ∈ End(C•(W u, F )) which, for x ∈ B acts on [W u(x)]∗ ⊗ Fx by
multiplication by f(x).

Denote by N ∈ End(C•(W u, F )) the operator acting on Ci(W u, F ) by multiplication by i.

From now on, for c > 0, O(e−ct) denotes an element of End(C•(W u, F )) which preserves
the Z-grading and is O(e−ct) as t→∞.

Theorem 6.2.2. There exists c > 0 such that as t→ +∞

P∞,tet = etF
(
π

T

)N/2−n/4
(1 +O(e−ct)). (6.45)

In particular for t ≥ 0 large enough, P∞,tet ∈ End(C•(W u, F )) is one-to-one.

Proof. Let x ∈ B and let h ∈ Fx. Define

s = W u(x)∗ ⊗ h. (6.46)

Recall that by definition

P∞ : α 7→
∑
x∈B

W u(x)∗ ⊗
∫
W
u

(x)
α. (6.47)

Additionally, P∞,t is the restriction of P∞ to Ωsm,t(M,F ). Thus

P∞,tets =
∑

y∈Bind(x)

W u(y)∗ ⊗
∫
W
u

(y)
etf ẽts

=
∑

y∈Bind(x)

etf(y)W u(y)∗ ⊗
∫
W
u

(y)
et(f−f(y))ẽts.

(6.48)

Note that if y ∈ B, f − f(y) ≤ 0 on W u
(y) by definition.

Recall from Chapter 3 that each W u
(y) is a compact manifold with conical simplicialities.

Using Theorem 6.1.5, as t→∞∫
W
u

(y)
et(f−f(y))ẽts =

∫
W
u

(y)
et(f−f(y))(ẽts− Jts+ Jts)

=

∫
W
u

(y)
et(f−f(y))Jts+

∫
W
u

(y)
et(f−f(y))(ẽt − Jt)s

=

∫
W
u

(y)
et(f−f(y))Jts+O(e−ct)h.

(6.49)
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Recall that if z ∈ BM (x, ε), Jts(z) = µ(z)

(αt)1/2
exp

(−t|z|2
2

)
ρx ⊗ h. Since the support of µ is

contained in BM (x, ε), the support of Jts is also contained in BM (x, ε). Then

∫
W
u

(x)
et(f−f(x))Jts =

∫
W
u

(x)
exp

(
− t

2

ind(x)∑
i=1

|yi|2
)

(αt)
−1/2 exp

(
− t

2

ind(x)∑
i=1

|yi|2
)
ρx ⊗ h

=

((π
t

)−n/4
+O(e−ct)

)(∫
W
u

(x)
exp

(
− 1

2
· 2t

ind(x)∑
i=1

|yi|2
)
ρx

)
h

=
((π

t

)−n/4
+O(e−ct)

)(π
t

)ind(x)/2
h

=
(π
t

) ind(x)
2
−n

4
(1 +O(e−ct))h.

(6.50)
Now suppose that y ∈ B. That is, y is a critical point of f . It is proven in [Lau92], the limit
points of W u(y) consist of the union of some W u

(y′), where each y′ is a critical point of f
such that ind(y′) < ind(y). In particular, if y ∈ B satisfies ind(y) = ind(x) then x /∈W u

(y).

There exists some c > 0 such that if y ∈ B so that y 6= x and ind(y) = ind(x), then
x /∈W u

(y) and so
Jts = O(e−ct) (6.51)

on W u
(y).

Note that∑
y∈Bind(x)

etf(y)W u(y)∗⊗
∫
W
u

(y)
et(f−f(y))ẽts

= etf(x)W u(x)∗ ⊗
(π
t

) ind(x)
2
−n

4
(1 +O(e−ct)) +O(e−ct)

= etf(x)W u(x)∗ ⊗
(π
t

) ind(x)
2
−n

4
(1 +O(e−ct)).

(6.52)

Therefore, P∞,t = etF (πt )N/2−n/4(1 +O(e−ct)).

6.3 Two Identities

Note that Ωsm,t is finite dimensional, so we may apply the Knudsen-Mumford map to obtain a
metric on detH•(Ωsm,t).
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Definition 6.3.1. Let ‖·‖detH•(M,F ),t be the metric on H•(M,F ) associated to 〈·, ·〉Ωsm,t,t
by the Knudsen-Mumford map and the canonical isomorphism H•(Ωsm,t) ∼= H•(M,F ).
Let |·|HodgedetH•(M,F ),t be the metric associated to 〈·, ·〉Ωsm,t,t by the Hodge isomorphism and the
canonical isomorphism H•(Ωsm,t) ∼= H•(C•(W u, F )) ∼= H•(M,F ).

The following proposition follows immediately from Proposition 2.3.3.

Proposition 6.3.2. The following identity holds

log(τ2
RS,sm(f,t)) + log((|·|Hodgedet(H•(M,F )),t)

2) = log((‖·‖det(H•(M,F )),t)
2). (6.53)

By Theorems 6.1.7 and 6.2.2, if t ≥ 0 is large enough, P∞,t is invertible. Then for t ≥ 0 large
enough, P ∗∞,tP∞,t is invertible.

Theorem 6.3.3. For t ≥ 0 large enough,

log

( ‖·‖Mdet(H•(M,F ))

‖·‖det(H•(M,F )),t

)2

= Trs[log(P ∗∞,tP∞,t)]. (6.54)

Proof. For t ≥ 0 large enough, the map P∞,t : Ωsm,t → C•(W u, F ) is a one-to-one quasi-
isomorphism, which induces the canonical isomorphism

H•(Ωsm,t) ∼= H•(C•(W u, F )). (6.55)

Thus, det−1(Ωsm,t) ⊗ det(C•(W u, F )) is canonically trivial, and detP∞,t is precisely the
canonical section which trivializes det−1(Ωsm,t) ⊗ det(C•(W u, F )). Then it is immediately
clear that

log

( ‖·‖Mdet(H•(M,F ))

‖·‖det(H•(M,F )),t

)2

= log(‖detP∞,t‖2det−1(Ωsm,t)⊗det(C•(Wu,F ))
). (6.56)

However, ‖detP∞,t‖2det−1(Ωsm,t)⊗det(C•(Wu,F ))
= det(P ∗∞,tP∞,t), thus

log(‖detP∞,t‖2det−1(Ωsm,t)⊗det(C•(Wu,F ))
) = log(det(P ∗∞,tP∞,t))

= Trs[log(P ∗∞,tP∞,t)].
(6.57)
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6.4 Proof of the Main Theorem

Now we prove the desired theorem.

Theorem 6.4.1. Let M be a closed manifold Riemannian of dimension n, and let F → M be
a vector bundle associated to a representation π1(M) → GL(n,R) equipped with a metric
gF whose induced metric on the line bundle detF is flat. Let (gTM , f) be a generalized
triangulation for M . Then the following identity holds:

lim
t→+∞

[
log(τRS,sm(f, t)2) + log

 |·|HodgedetH•(M,F ),t

|·|HodgedetH•(M,F )

2

+ log

(
t

π

)(n
2
χ(F )− χ̃′(F )

)
+ 2t rank(F ) TrCr(f)

s [f ]

]

= log

‖·‖MdetH•(M,F )

|·|HodgedetH•(M,F )

2

.

(6.58)

Proof. By Proposition 6.3.2 and Theorem 6.3.3, for t ≥ 0 large enough,

log(τRS,sm(f, t)2) + log(|·|Hodgedet(H•(M,F )),t)
2+

Trs[log(P ∗∞,tP∞,t)] = log(‖·‖Mdet(H•(M,F )))
2.

(6.59)

For t ≥ 0 large enough,

Trs[log(P ∗∞,tP∞,t)] = Trs[log((P∞,tet)
∗P∞,tet)]− Trs[log(e∗t et)]. (6.60)

Then by Theorem 6.1.7, there is some c > 0 such that as t→∞

Trs[log(e∗t et)] = O(e−ct). (6.61)

Also, by Theorem 6.2.2,

(P∞, tet)
∗P∞,tet = (1 +O(e−ct))∗

(π
t

)N−n/2
e2tF (1 +O(e−ct)). (6.62)

Therefore,

Trs[log((P∞,tet)
∗P∞,tet)] = Trs

[
log
((π

t

)N−n/2
e2tF

)]
+O(e−ct). (6.63)
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Moreover,

Trs

[
log
((π

t

)N−n/2
e2tF

)]
= 2 Trs[F ]t = Trs

[(n
2
−N

)]
log
( t
π

)
. (6.64)

Note that
Trs[F ] = TrBs [f ],

Trs

[(n
2
−N

)]
=
n

2
χ(F )− χ̃′(F ).

(6.65)

From the above considerations, we find that as t→∞,

log(τRS,sm(f, t)2) + log(|·|Hodgedet(H•(M,F )),t)
2

+ 2 TrBs [f ]t+
(n

2
χ(F )− χ̃′(F )

)
log
( t
π

)
= log(‖·‖Mdet(H•(M,F )))

2 +O(e−ct),

(6.66)

which implies the claim.

Now we will obtain Theorem 6.0.1 from Theorem 6.4.1. First note that since M is compact
and odd dimensional, χ(F ) = 0 and

log

 |·|HodgedetH•(M,F ),t

|·|HodgedetH•(M,F )

2

= 0. (6.67)

Then multiply both sides by −1
2 to obtain as t→∞

log
|·|HodgedetH•(M,F )

‖·‖MdetH•(M,F )

= − log τRS,sm(f, t)− t rank(F ) TrCr(f)
s [f ]

+
1

2
χ̃′(F ) log

( t
π

)
+O(1).

(6.68)

By adding log τRS,sm(f, t) to both sides we obtain Theorem 6.0.1.
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Chapter 7

Asymptotic Expansion of the Large
Eigenvalues

In this section we examine the large t asymptotics of τRS,la(f, t). Rather than computing it
directly, we will instead prove a comparison theorem, which describes the asymptotics of the
difference of the Ray-Singer torsion for two different manifolds equipped with Morse functions
that have the same critical point structure. Using this, we will show that ‖·‖RSdetH•(M,F ) =

‖·‖MdetH•(M,F ) by considering the product manifolds M × S1 × S1 and M × S2. This chapter
follows [Bra03].

7.1 Statement of the Comparison Theorem

Let M , M̃ be closed Riemannian manifolds of odd dimension n. Let F , F̃ be real flat vector
bundles overM , M̃ , respectively, with dimF = dim F̃ . We assume that F and F̃ are equipped
with Hermitian metrics so that the induced metrics on the determinant lines detF , det F̃ are
flat. Let f : M → R and f̃ : M̃ → R be Morse functions.

Definition 7.1.1. We say the Morse functions f , f̃ , have the same critical point structure
if there exist open neighborhoods U ⊂ M , Ũ ⊂ M̃ of the sets of critical points of f , f̃
respectively, and an isometry φ : U → Ũ , such that f = f̃ ◦ φ.

Definition 7.1.2. We say that a function l : R → R has a nice asymptotic expansion as

65
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t→ ±∞ if

l(t) =

d∑
j=0

aj(t/|t|)tj +

d∑
k=0

bk(t/|t|)tk log(|t|) +O(1) (7.1)

and the coefficient a0 satisfies a0(1) = a0(−1) = 0.

In the first half of this chapter we prove the following theorem, which we will then use to prove
the Cheeger-Müller theorem.

Theorem 7.1.3. Suppose f : M → R and f̃ : M̃ → R are Morse functions with the same
critical point structure, and U , Ũ are isometric neighborhoods around the critical points as in
the above definition. Then log τRS,la(f, t)− log τRS,la(f̃ , t) has a nice asymptotic expansion.

7.2 Determinant of an Almost Elliptic Operator with Parameter

We will work in a more general situation. Let F be a real vector bundle over a closed Rieman-
nian manifold M of dimension n. As in previous chapters, suppose that gTM is a Riemannian
metric on M and suppose that gF is a metric on F . Consider the following operator, acting on
smooth sections of F :

Ht = A+ tB + t2V : C∞(M,F )→ C∞(M,F ), t ∈ R, (7.2)

where A : C∞(M,F ) → C∞(M,F ) is a second-order self-adjoint elliptic differential op-
erator with positive definite leading symbol, and where B, V = B(x), V (x) : F → F are
self-adjoint bundle maps with V (x) ≥ 0 for all x ∈ M . Recall in Chapter 5 we expanded the
Witten Laplacian so it does take this form.

Suppose there exists constants t0, c1, c2 > 0 so that for all |t| > t0, there are finitely many
eigenvalues of Ht which are smaller than e−c1|t|, and all other eigenvalues of Ht are larger
than c2|t|. Let Pla,t be the orthogonal projection onto the subspace of smooth sections to E
spanned by eigensections corresponding to eigenvalues greater than 1. Again, this assumption
is satisfied by the Witten Laplacian due to the spectral gap theorem.

Recall that Pla,t and (id−Pla,t) are idempotent, so rank(id−Pla,t) is equal to the number of
eigenvalues smaller than 1, counting multiplicites. Hence the mapping t 7→ rank(id−Pla,t) is
locally constant for |t| > max{t0, 1/c2}. Let |t| > max{t0, 1/c2} and set

m± = rank(id−Pla,t). (7.3)

Also assume that there exist constants k > 2n+ 1 and C > 0 so that

Tr
[
(Hk

t + ε)−1Pla,t

]
< C (7.4)
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for all ε > 0 and |t| � 0. We wish to prove that the Witten Laplacian satisfies this assumption.
To do so, we will use the following from [BFK96, Lemma 3.3].

Let N(q, λ) denote the counting function for the large eigenvalues of ∆q
f,t. More precisely,

N(q, λ) is the number of eigenvalues (counting multiplicities) between 1 and λ.

Lemma 7.2.1. There exists a constant C > 0 which is independent of t such that for all
λ ∈ spec(∆q

f,t) ∩ [1,∞),
N(q, λ) ≤ Cλn. (7.5)

The following proposition was stated in [Bra03, Section 5], however the proof given here is
original.

Proposition 7.2.2. There exists a constant C > 0 which is independent of t such that for all
k > 2n+ 1, ε > 0,

Tr
[
((∆f,t)

k + ε)−1Pla,t

]
< C. (7.6)

Proof. Fix some ε > 0, k > 2n + 1, and some q = 0, ..., n. Let spec(∆q
f,t) ∩ [1,∞) =

{λq,t,1, λq,t,2, ...} so that λq,t,i ≤ λq,t,j for i < j. We need to show that there exists some
constant Cq > 0 which is independent of t so that

∞∑
i=1

1

λkq,t,i + ε
< C. (7.7)

To do so, use Lemma 7.2.1 to choose some Cq > 0 which is independent of t such that for all
λ ∈ spec(∆q

f,t) ∩ [1,∞),
N(q, λ) ≤ Cqλn. (7.8)

In particular,
i ≤ Cqλnq,t,i (7.9)

so
1

λ2n
q,t,i

≤ Cq
1

i2
. (7.10)

Then,
∞∑
i=1

1

λkq,t,i + ε
<

∞∑
i=1

1

λ2n
q,t,i

≤ Cq

( ∞∑
i=1

1

i2

)
= Cq

π2

6
. (7.11)

Set

C =

n∑
q=0

Cq
π2

6
(7.12)
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Let F̃ be a real vector bundle over another compact Riemannian manifold M̃ . Assume rank F̃ =
rankF . Let

H̃t = Ã+ tB̃ + t2Ṽ : C∞(M̃, F̃ )→ C∞(M̃, F̃ ) (7.13)

be defined with the same assumptions as above. Similarly, let P̃la,t be the orthogonal projection
onto the span of eigensections of H̃t with eigenvalues greater than 1. We wish to prove the
following theorem.

Theorem 7.2.3. Suppose there exist open sets U ⊂ M and Ũ ⊂ M̃ such that V (x) > 0 for
all x ∈ M \ U and Ṽ (x) > 0 for all x ∈ M̃ \ Ũ . Let φ : U → Ũ be a diffeomorphism
which preserves the metric. Assume the induced map ψ : φ∗Ẽ|Ũ → E|U is an isometry, so we
may identify the restriction of Ht to U with the restriction of H̃t to Ũ . Then log det’HtPla,t −
log det’ H̃tP̃la,t has a nice asymptotic expansion.

This theorem implies Theorem 7.1.3 as follows. By definition

log τRS,la(f, t)− log τRS,la(f̃ , t) =
1

2

n∑
i=0

(−1)ii log det’[∆i
f,tP

i
la,t]

− 1

2

n∑
j=0

(−1)jj log det’[∆i
f̃ ,t
P̃ ila,t]

=
1

2

n∑
i=0

(−1)ii
(

log det’[∆i
f,tP

i
la,t]

− log det’[∆i
f̃ ,t
P̃ ila,t]

)
.

(7.14)

Provided each log det’[∆i
f,tP

i
la,t]− log det’[∆i

f̃ ,t
P̃ ila,t] has a nice asymptotic expansion, then it

is clear that log τRS,la(f, t)− log τRS,la(f̃ , t) also must have a nice asymptotic expansion.

Before proving Theorem 7.2.3 we will prove the following proposition.

Proposition 7.2.4. For each k > 2n+ 1 the following equality holds

k log det’HtPla,t = log det’HkPla,t

= log det’[(Hk
t + t2k)Pla,t]− t2k

∫ 1

0
Tr[(Hk

t + τt2k)−1Pla,t]dτ.
(7.15)

Proof. Recall for k > 2n + 1 the operator [(Hk
t + τt2k)Pla,t]

−1 has a well defined trace for
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each t. The first equality is obvious. For the second equality consider

d

dτ
log det’[(Hk

t + τt2k)Pla,t] = Tr

[
(Hk

t + τt2k)−1 d

dτ
(Hk

t + τt2k)Pla,t

]
= Tr

[
(Hk

t + τt2k)−1t2kPla,t

]
= t2k Tr

[
(Hk

t + τt2k)−1tPla,t

] (7.16)

Now we will integrate both sides of this equality. For the left hand side we have∫ 1

0

d

dτ
log det’[(Hk

t + τt2k)Pla,t]dτ = log det’[(Hk
t + t2k)Pla,t]− log det’[Hk

t Pla,t].

(7.17)
Thus we see that

log det’[(Hk
t + t2k)Pla,t]− log det’[Hk

t Pla,t] = t2k
∫ 1

0
Tr
[
(Hk

t + τt2k)−1tPla,t

]
dτ. (7.18)

From now on, fix a k > 2n+ 1 so that there exists a constant C > 0 such that

Tr
[
(Hk

t + ε)−1Pla,t

]
< C (7.19)

for all ε > 0, |t| � 0.

Lemma 7.2.5. As t→∞ we have∫ 1

0
Tr
[
(Hk

t + τt2k)−1Pla,t

]
dτ =

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
dτ +O(t−2k).

(7.20)

Proof. Since large eigenvalues of Ht are greater than c2|t| and since Pla,t is the projection
onto the subspace spanned by eigensections corresponding to large eigensections, we have∥∥(Hk

t + τt2k)−1Pla,t
∥∥ ≤ ((c2t)

k + τt2k)−1, where we are using the operator norm. Recall
Hilbert’s resolvent identity:

(A− z)−1 − (A− w)−1 = (z − w)(A− z)−1(A− w)−1 (7.21)

for any operator A and any z, w in the resolvent set of A. Using this identity we have∫ 1

0
Tr
[
(Hk

t + τt2k)−1Pla,t

]
dτ −

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
dτ

= |t|−k
∫ 1

0
Tr
[
(Hk

t + τt2k)−1(Hk
t + τt2k + |t|−k)−1Pla,t

]
dτ. (7.22)



70 CHAPTER 7. ASYMPTOTIC EXPANSION OF THE LARGE EIGENVALUES

Then using the above and the inequalities
∥∥(Hk

t + τt2k)−1Pla,t
∥∥ ≤ ((c2t)

k + τt2k)−1 and
Tr
[
(Hk

t + ε)−1Pla,t
]
< C we have

|t|−k
∫ 1

0
Tr
[
(Hk

t + τt2k)−1(Hk
t + τt2k + |t|−k)−1Pla,t

]
dτ

≤ |t|−k
∫ 1

0

∥∥∥(Hk
t + τt2k)−1Pla,t

∥∥∥Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
dτ

≤ C|t|−k
∫ 1

0

1

(c2t)k + τt2k
dτ

= C|t|−3k log(1 + tk/ck2) = O(t−2k).

(7.23)

Next consider the following proposition.

Proposition 7.2.6. As t→ ±∞∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
dτ

=

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
dτ − 3km± log(|t|) +O(t−2k),

(7.24)

and

log det’
[
(Hk

t + t2k)Pla,t

]
= log det’

[
Hk
t + t2k

]
− 2km± log(|t|) +O(1). (7.25)

Proof. For the first equality note that∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
dτ

=

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
dτ

−
∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1(id−Pla,t)
]
dτ.

(7.26)

By our assumptions on the small eigenvalues of Ht we have that∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1(id−Pla,t)
]
dτ

≥
∫ 1

0
m±(e−c1|t|k + τt2k + |t|−k)−1dτ.

(7.27)
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Thus∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
dτ −

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1(id−Pla,t)
]
dτ

≤
∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
dτ −

∫ 1

0
m±(e−c1|t|k + τt2k + |t|−k)−1dτ.

(7.28)
So it remains to compute the integral

∫ 1
0 m±(e−c1|t|k + τt2k + |t|−k)−1dτ . Note that

∫ 1

0
m±(e−c1|t|k + τt2k + |t|−k)−1dτ = m±

[
log(e−c1|t|k + τt2k + |t|−k)

t2k

]1

0

= m±t
−2k log

(
1 +

t2k

e−c1|t|k + |t|−k

)

= m±t
−2k

(
log
(
|t|3k

)
+ log

(
|t|−k +

|t|−k

e−c1|t|k
+ |t|−k

))
.

(7.29)

Therefore∫ 1

0
m±(e−c1|t|k + τt2k + |t|−k)−1dτ = 3km±t

−2k log |t|

+m±t
−2k log

(
|t|−3k +

|t|−k

ec1|t|k + |t|−k

)
.

(7.30)

However

lim
t→±∞

log

(
|t|−3k |t|−k

ec1|t|k + |t|−k

)
= 0, (7.31)

so ∫ 1

0
m±(e−c1|t|k + τt2k + |t|−k)−1dτ = 3km±t

−2k log |t|+O(t2k), (7.32)

which implies the first equation. For the second equation, note that

log det’
[
(Hk

t + t2k)Pla,t

]
= log det’

[
Hk
t + t2k

]
− log det’

[
(Hk

t + t2k)(id−Pla,t)
]
.

(7.33)
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By the assumptions on the small eigenvalues of Ht we have that

log det’
[
(Hk

t + t2k)(id−Pla,t)
]
≤ m± log

(
e−c1|t|k + t2k

)
= m±

(
log(t2k) + log

(
1 +

e−c1|t|k

t2k

))
= 2km± log |t|+O(1),

(7.34)

since

lim
t→±∞

log

(
1 +

e−c1|t|k

t2k

)
= 0. (7.35)

This implies the second equation.

Note that Hk
t + t2k is an elliptic differential operator with parameter t and weight χ > 0. For

more details on elliptic operators with parameter, see for example, [Shu96, Chapter 2]. We will
utilize the following Theorem from [BFK92, Theorem A.3].

Theorem 7.2.7. Suppose P (t) is an elliptic differential operator of order m ≥ 1 with param-
eter t and weight χ > 0 such that there exists a solid angle L in the complex plane with the
property that any θ ∈ L is a principal angle for P (t).

Then log det’(P (t)) has a nice asymptotic expansion as |t| → ∞.

Since the spectrum of Hk + t2k is entirely real, Hk + t2k satisfies the conditions of Theorem
7.2.7. So log det’(Hk + t2k) has a nice asymptotic expansion.

By Proposition 7.2.4,

k log det’HtPla,t − k log det’ H̃tP̃la,t

= log det’
[
(Hk

t + t2k)Pla,t

]
− log det’

[
(H̃k

t + t2k)P̃la,t

]
− t2k

∫ 1

0
Tr
[
(Hk

t + τt2k)−1Pla,t

]
− Tr

[
(H̃k

t + τt2k)−1P̃la,t

]
dτ.

(7.36)

By Proposition 7.2.6,

log det’
[
(Hk

t + t2k)Pla,t

]
− log det’

[
(H̃k

t + t2k)P̃la,t

]
= log det’

[
(Hk

t + t2k)
]
− log det’

[
(H̃k

t + t2k)
]

− 2km± log |t|+ 2km̃± log |t|+O(1).

(7.37)
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Since log det’(Hk
t + t2k) and log det’(H̃k

t + t2k) have nice asymptotic expansions, then the
above equation indicates that log det’

[
(Hk

t + t2k)Pla,t
]
−log det’

[
(H̃k

t + t2k)P̃la,t

]
must also

have a nice asymptotic expansion. Thus Theorem 7.2.3 is true provided t2k
∫ 1

0 Tr
[
(Hk

t + τt2k)−1Pla,t
]
−

Tr
[
(H̃k

t + τt2k)−1P̃la,t

]
dτ has a nice asymptotic expansion. By Lemma 7.2.5,

∫ 1

0
Tr
[
(Hk

t + τt2k)−1Pla,t

]
− Tr

[
(H̃k

t + τt2k)−1P̃la,t

]
dτ

=

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
− Tr

[
(H̃k

t + τt2k + |t|−k)−1P̃la,t

]
dτ +O(t−2k).

(7.38)
Then by Proposition 7.2.6∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1Pla,t

]
− Tr

[
(H̃k

t + τt2k + |t|−k)−1P̃la,t

]
dτ

=

∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
− Tr

[
(H̃k

t + τt2k + |t|−k)−1
]
dτ

− 3km±t
−2k log |t|+ 3km̃±t

−2k log |t|+O(t−2k).

(7.39)

Thus, t2k
∫ 1

0 Tr
[
(Hk

t + τt2k)−1Pla,t
]
−Tr

[
(H̃k

t + τt2k)−1P̃la,t

]
dτ has a nice asymptotic ex-

pansion if
∫ 1

0 Tr
[
(Hk

t + τt2k + |t|−k)−1
]
− Tr

[
(H̃k

t + τt2k + |t|−k)−1
]
dτ . Theorem 7.2.3

follows from the following proposition.

Proposition 7.2.8. Under the assumptions of Theorem 7.2.3 the function

t2k
∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
− Tr

[
(H̃k

t + τt2k + |t|−k)−1
]
dτ (7.40)

has a nice asymptotic expansion.

We will prove Proposition 7.2.8 in the remainder of this section. Recall that the sets U and
Ũ are defined in the statement of Theorem 7.2.3. Let W ⊂ M be an open subset such that
W ⊂ U and such that V (x) > 0 for all x /∈ W . This choice is possible since the points x
where V (x) = 0 is a closed subset of the open set U . Fix an ε > 0 such that V (x) > ε for
all x /∈ W . We will assume without a loss of generality that ε < 1. Let v : M → [0, ε] be a
smooth function such that supp v ⊂ U and v|W = ε. Let

At,τ := Hk
t + τt2k + |t|−k ,

At,τ,v := Hk
t + τt2k + |t|−k + v2t2k.

(7.41)
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To simplify our notation we will identify U and Ũ via the diffeomorphism φ : U → Ũ which
was defined in the statement of Theorem 7.2.3. In particular, we will also view v as a function
on M̃ . We will define Ãt,τ and Ãt,τ,v by replacing Hk

t with H̃k
t in the definitions for At,τ and

At,τ,v.

Lemma 7.2.9. Let Kτ,v(t, x, y) denote the Schwartz kernel of the operator A−1
t,τ,v. For each

N ∈ N

Kτ,v(t, x, x) =
N∑
j=0

αj(τ, t/ |t| , x)tn−j−2k + rN,τ (t, x), (7.42)

where tNrN,τ (t, x) → 0 as t → ±∞ uniformly in τ ∈ [0, 1] and x ∈ M . The coefficients
αj(τ,±1, x) depend continuously on τ ∈ [0, 1] and can be expressed in terms of the full symbol
ofHt and a finite number of its derivatives. If j = 2i is even, then αj(τ, 1, x)+αj(τ,−1, x) =
0.

Proof. Note that the operator At,τ,v is an elliptic operator with parameter. Then this lemma
is a consequence of the standard contruction of the parametrix of an elliptic operator with
parameter. For more details on this construction, see for example, [Shu96, Section 9].

By definition TrA−1
t,τ,v =

∫
M Kτ,v(t, x, x)dx, so we have the following corollary.

Corollary 7.2.10. The function t2k
∫ 1

0 TrA−1
t,τ,vdτ has a nice asymptotic expansion.

The following lemma will be used to obtain Proposition 7.2.8.

Lemma 7.2.11. Under the assumptions of Theorem 7.2.3 we have

Tr
[
A−1
t,τ −A

−1
t,τ,v

]
− Tr

[
Ã−1
t,τ − Ã

−1
t,τ,v

]
= O(t−2k) (7.43)

as t→∞ uniformly in τ ∈ [0, 1].

Proof. We have
A−1
t,τ −A

−1
t,τ,v = A−1

t,τ v
2t2kA−1

t,τ,v = A−1
t,τ,vv

2t2kA−1
t,τ . (7.44)

Therefore,

Tr
[
A−1
t,τ −A

−1
t,τ,v

]
= Tr

[
A−1
t,τ v

2t2kAt,τ,v

]
= t2k Tr

[
vA−1

t,τ,vA
−1
t,τ v
]

= t2k Tr
[
vA−2

t,τ,vv
]

+ t4k Tr
[
vA−2

t,τ,vv
2A−1

t,τ v
]
.

(7.45)
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We may use the same argument to obtain a similar equality for Tr
[
Ã−1
t,τ − Ã

−1
t,τ,v

]
.

Let K̃τ,v(t, x, y) denote the Schwartz kernel of the operator Ã−1
t,τ,v. By Lemma 7.2.9, for all

x ∈ supp v ⊂ U and all N ∈ N, we have Kτ,v(t, x, x) − K̃τ,v(t, x, x) = O(t−N ) as t → ∞
uniformly in τ ∈ [0, 1]. Therefore

Tr
[
vA−2v

]
− Tr

[
vÃ−2

t,τ,v

]
=

∫
M
v(Kτ,v(t, x, x)− K̃τ,v(t, x, x))vdx = O(t−N ) (7.46)

as t→∞ uniformly in τ ∈ [0, 1].

Let It,τ,v = Tr
[
A−1
t,τ −A

−1
t,τ,v

]
− Tr

[
Ã−1
t,τ − Ã

−1
t,τ,v

]
. Thus we have that

It,τ,v = Tr
[
A−1
t,τ −A

−1
t,τ,v

]
− Tr

[
Ã−1
t,τ − Ã

−1
t,τ,v

]
= t2k

(
Tr
[
vA−2

t,τ,vv
]
− Tr

[
vÃ−2

t,τ,vv
])

+ t4k
(

Tr
[
vA−2

t,τ,vv
2A−1

t,τ v
]
− Tr

[
vÃ−2

t,τ,vv
2Ã−1

t,τ v
])

= t2k
∫
M
v(Kτ,v(t, x, x)− K̃τ,v(t, x, x))vdx

+ t4k
(

Tr
[
vA−2

t,τ,vv
2A−1

t,τ v
]
− Tr

[
vÃ−2

t,τ,vv
2Ã−1

t,τ v
])

= t4k
(

Tr
[
vA−2

t,τ,vv
2A−1

t,τ v
]
− Tr

[
vÃ−2

t,τ,vv
2Ã−1

t,τ v
])

+O(t2k−N )

(7.47)

as t→∞ uniformly in τ ∈ [0, 1].

Using the isometry ψ : φ∗Ẽ|Ũ → E|U which was defined in the statement of Theorem 7.2.3,
we may view vÃ−2

t,τ,vv and vÃt,τv as operators acting on the space of sections of the bundle E.
Then ∣∣∣Tr

[
vA−2

t,τ,vv
2A−1

t,τ v
]
− Tr

[
vÃ−2

t,τ,vv
2Ã−1

t,τ v
]∣∣∣

≤
∣∣∣Tr
[
(vA−2

t,τ,vv − vÃ
−2
t,τ,vv)vA−1

t,τ v
]∣∣∣

+
∣∣∣Tr
[
vÃ−2

t,τ,vv(vA−1
t,τ v − vÃ

−1
t,τ v)

]∣∣∣
≤
∥∥vA−1

t,τ v
∥∥ · ∣∣∣Tr

[
vA−2

t,τ,vv − vÃ
−2
t,τ,vv

]∣∣∣
+
∥∥∥vÃ−2

t,τ,vv
∥∥∥ · ∣∣∣Tr

[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣ .

(7.48)

Note that ∥∥vA−1
t,τ v
∥∥ ≤ |t|k (7.49)
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and ∥∥∥vÃ−2
t,τ,vv

∥∥∥ ≤ ε−2t−4k. (7.50)

Now fix N > 7k. We see that

|It,τ,v| =
∣∣∣t4k Tr

[
vA−2

t,τ,vv
2A−1

t,τ v
]
− t4k Tr

[
vÃ−2

t,τ,vv
2Ã−1

t,τ v
]∣∣∣+O(t2k−N )

≤ t4k
∥∥vA−1

t,τ v
∥∥ · ∣∣∣Tr

[
vA−2

t,τ,vv − vÃ
−2
t,τ,vv

]∣∣∣
+ t4k

∥∥∥vÃ−2
t,τ,vv

∥∥∥ · ∣∣∣Tr
[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣+O(t2k−N )

≤ |t|5k O(t−N ) + ε−2
∣∣∣Tr
[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣+O(t2k−N )

= ε−2
∣∣∣Tr
[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣+O(t−2k).

(7.51)

Similar to the beginning of the proof, we have

vA−1
t,τ v − vÃ

−1
t,τ = t2k(vA−1

t,τ,vv
2A−1

t,τ v − vÃ
−1
t,τ,vv

2Ã−1
t,τ v)

+ (vA−1
t,τ,vv − vÃ

−1
t,τ,vv)

= t2kvA−1
t,τ,vv(vA−1

t,τ v − vÃ
−1
t,τ v)

+ t2k(vA−1
t,τ,vv − vÃ

−1
t,τ,vv)vÃ−1

t,τ v

+ (vA−1
t,τ,vv − vÃ

−1
t,τ,vv).

(7.52)

Lemma 7.2.9 implies that for all N ∈ N the traces of the second and third summands in the
right-hand side of the above equation behave as O(t−N ) when t→∞ uniformly in τ ∈ [0, 1].
Therefore∣∣∣Tr

[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣ ≤ t2k ∥∥vA−1

t,τ,vv
∥∥ · ∣∣∣Tr

[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣+O(t−N ). (7.53)

Also,

t2k
∥∥vA−1

t,τ,vv
∥∥ ≤ ε2t2k

ε2t2k + |t|−k
≤ 1− ε−2 |t|−3k

2
. (7.54)

Hence conclude that ∣∣∣Tr
[
vA−1

t,τ v − vÃ
−1
t,τ v
]∣∣∣ ≤ O(t3k−N ). (7.55)

Since we assumed N > 7k,

|It,τ,v| ≤ ε−2O(t−4k) +O(t−2k) = O(t−2k), (7.56)

so It,τ,v = O(t−2k) uniformly in τ ∈ [0, 1].
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Now we will show how to obtain Proposition 7.2.8 from what we have proven. Note that

t2k
∫ 1

0
Tr
[
(Hk

t + τt2k + |t|−k)−1
]
− Tr

[
(H̃k

t + τt2k + |t|−k)−1
]
dτ

= t2k
∫ 1

0
Tr
[
A−1
t,τ

]
− Tr

[
Ã−1
t,τ

]
dτ

= t2k
∫ 1

0
Tr
[
A−1
t,τ −A

−1
t,τ,v

]
− Tr

[
Ã−1
t,τ − Ã

−1
t,τ,v

]
dτ

+ t2k
∫ 1

0
Tr
[
A−1
t,τ,v

]
dτ + t2k

∫ 1

0
Tr
[
Ã−1
t,τ,v

]
dτ.

(7.57)

Note that the first summand on the right hand side of the above equation is O(1) by Lemma
7.2.11, and the last two summands have nice asymptotic expansions by Corollary 7.2.10.
Therefore, we have proven Proposition 7.2.8.

7.3 Proof of the Cheeger-Müller Theorem

We will restate Corollary 6.0.2 for convenience. For notational convenience, let

R(M,F, f) = log
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

. (7.58)

R(M,F, f) is a constant independent of f , however it is convenient to keep track of f in the
notation. To prove the Cheeger-Müller theorem we need to show that R(M,F, f) = 0.

Corollary 7.3.1. As t→∞,

log τRS,la(f, t) = R(M,F, f) + t rank(F ) TrCr(f)
s [f ]− 1

2
χ̃′(F ) log

(
t

π

)
+O(1). (7.59)

Furthermore, R(M,F, f) is independent of f .

Note that since e−(−t)(−f) = e−tf and e(−t)(−f) = etf , then ∆f,t = ∆−f,−t. Therefore

τRS,la(f,−t) = τRS,la(−f, t). (7.60)

Suppose we have chosen some closed Riemannian manifold M̃ , some flat vector bundle F̃ ,
and some Morse function f̃ such that the hypothesis of Theorem 7.2.3 is satisfied. Then
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rank(F ) = rank(F̃ ), χ̃′(F ) = χ̃′(F̃ ), and the Morse functions f and f̃ have the same critical
point structure. Therefore Tr

Cr(f)
s [f ] = Tr

Cr(f)
s [f̃ ]. So by Corollary 6.0.2,

R(M,F, f)−R(M̃, F̃ , f̃) = log τRS,la(f, t)− log τRS,la(f̃ , t) +O(1)

as t→∞. However by Theorem 7.1.3 log τRS,la(f, t)− log τRS,la(f̃ , t) has a nice asymptotic
expansion, so R(M,F, f) − R(M̃, F̃ , f̃) also has a nice asymptotic expansion. In particular,
since R(M,F, f)−R(M̃, F̃ , f̃) is constant, it must be equal to the free term of the asymptotic
expansion of log τRS,la(f, t)−log τRS,la(f̃ , t). By the definition, the free term satisfies a0(1)+
a0(−1) = 0. Therefore

[R(M,F, f)−R(M̃, F̃ , f̃)] + [R(M,F,−f)−R(M̃, F̃ , −̃f)] = 0. (7.61)

Since R(M,F, f) is independent of f , we have that

[R(M,F, f)−R(M̃, F̃ , f̃)] + [R(M,F,−f)−R(M̃, F̃ , −̃f)]

= 2R(M,F, f)− 2R(M̃, F̃ , f̃) = 0,
(7.62)

so R(M,F, f) = R(M̃, F̃ , f̃).

Now we will consider the product manifolds M ×S1×S1 and M ×S2. In order to define the
Ray-Singer and Milnor torsion on these manifolds, we need to choose a Morse function and
vector bundle for both.

More generally, let N be an even dimensional manifold with the vector bundle Fρ2 → N
associated to the trivial representation ρ2 : π1(N) → 0. Equip N with a generalised triangu-
lation (gTN , fN ) and let f̄ be the Morse function on the product manifold M ×N defined by
f̄(x, y) = f(x) + fN (y). Then by Theorem 4.1.3, log τRS(N, fN ) = 0. Additionally, it is
clear that the pullback bundle p∗1(F )⊗ p∗2(Fρ2) is isomorphic to p∗1(F ).

Equip the product manifolds M × S2 and M × S1 × S1, with the vector bundles described
above. We wish to define two Morse functions f1 : S2 → R and f2 : S1 × S1 → R, which
have the same critical point structure. To do so, we will need the following lemma [BFK96,
Lemma 4.2].

Lemma 7.3.2. Suppose M is a closed Riemannian manifold of dimension n, and (gTM , f) is
a generalized triangulation of M . Suppose that 0 ≤ q0 ≤ n− 1 is an integer, and x, y ∈M \
Cr(f). Then there exists a generalized triangulation (gTM

′
, f ′) which satisfies the following

four properties.

1. Crq(f
′) = Crq(f), for q /∈ {q0, q0 + 1},

2. Crq0(f ′) = Crq(f) ∪ {x}, Crq0+1(f ′) = Crq0+1(f) ∪ {y},
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3. (gTM
′
, f ′) is a subdivision of (gTM , f),

4. W u(y) ∩W s(x) is connected.

To construct the desired generalized triangulation on S1 × S1, choose a metric gT (S1×S1). We
may define a Morse function g2 : S1 × S1 → R by perturbing the usual height function so
that we obtain a self-indexing Morse function g2 which satisfies the Thom-Smale transversality
conditions. The function g2 has four critical points, two of which are index 1, one of which is
index 2, and one of which is index 0. Define f2 by deforming g2 so that one critical points of
index 2 and one index 0 are added, while all other critical points are left unchanged. Assume
without a loss of generality that f2 is self-indexing. This may be achieved by “denting” the
torus in an open set which does not contain any critical points of g2. Then (gT (S1×S1), f2) is a
generalized triangulation of S1 × S1.

To construct the generalized triangulation on S2, we will begin by defining g1 : S2 → R to be
the usual self-indexing height function and choose a metric hTS

2
so that (gTS

2
, g1) is a gener-

alized triangulation. Then apply Lemma 7.3.2 twice to obtain another generalized triangulation
(hTS

2
, f1) such that f1 has two critical points of index 0, two critical points of index 1, and

two critical points of index 2. Once again, we will assume without a loss of generality that f1

is self-indexing.

By construction, it is clear that f1 and f2 have the same critical point structure.

Define the Morse functions f1 : M × S2 → R and f2 : M × S1 × S1 → R by f1(x, y) =
f(x)+f1(y) and f2(x, y) = f(x)+f2(y). Additionally, equip the product manifolds M ×S2

and M ×S1×S1 with the product metrics, which are denoted by gT (M×S2) and gT (M×S1×S1)

respectively. Then (f1, g
T (M×S2)) and (f2, g

T (M×S1×S1)) are generalized triangulations, and
f1 and f2 have the same critical point structure. This implies that R(M × S2, p∗1(F ), f1) =
R(M × S1 × S1, p∗1(F ), f2).

Since S2 and S1 × S1 are even dimensional and equipped with a vector bundle obtained from
an orthogonal representation, τRS(S2) = τRS(S1 × S1) = 1 by Theorem 4.1.3. Recall that
χ(S2) = 2, and χ(S1 × S1) = 0.

The product formula stated in Theorem 4.2.1 also applies to τRS,la(f, t) for product manifolds.
Thus

log τRS,la(f1, t) = 2 log τRS,la(f, t). (7.63)

Let χ′(M) =
∑

x∈Cr(f)(−1)ind(x) ind(x), let χ′(S2) =
∑

x∈Cr(f1)(−1)ind(x) ind(x), and let
χ′(M × S2) =

∑
x∈Cr(f1)(−1)ind(x) ind(x). χ′(M) is called the derived Euler characteristic

of M . By definition, rank(F )χ′(M) = χ̃′(F ). The product formula for the derived Euler
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characteristic gives

χ′(M × S2) = χ(M)χ′(S2) + χ′(M)χ(S2). (7.64)

Since M is compact and has odd dimension, χ(M) = 0. Additionally, χ(S2) = 2. Thus

χ′(M × S2) = 2χ′(M). (7.65)

Since rank(F ) = rank(p∗1(F )), we have 2χ̃′(F ) = χ̃′(p∗1(F )). Combining the product for-
mula, the above considerations, and Corollary 6.0.2, as t→∞,

log τRS,la(f1, t) = R(M × S2, p∗1(F ), f1) +
(
t− 1

2
log
( t
π

))
χ̃′(p∗1(F )) +O(1)

= 2 log τRS,la(f, t)

= 2R(M,F, f) +
(
t− 1

2
log
( t
π

))
2χ̃′(F ) +O(1)

= 2R(M,F, f) +
(
t− 1

2
log
( t
π

))
χ̃′(p∗1(F )) +O(1).

(7.66)

Therefore, R(M × S2, p∗1(F ), f1) = 2R(M,F, f).

Using Theorem 4.2.1,

log τRS(M × S2, p∗1(F )) = 2 log τRS(M,F )

log τRS(M × S1 × S1, p∗1(F )) = 0.
(7.67)

Therefore, R(M × S1 × S1, p∗1(F ), f2) = 0. Since f1 and f2 have the same critical point
structure, R(M × S2, p∗1(F ), f1) = R(M × S1 × S1, p∗1(F ), f2) = 0, and

2R(M,F, f) = R(M × S2, p∗1(F ), f1)

= R(M × S1 × S1, p∗1(F ), f2) = 0.
(7.68)

It follows that

R(M,F, f) = log
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

= 0, (7.69)

and
‖·‖RSdetH•(M,F )

‖·‖MdetH•(M,F )

= 1, (7.70)

which completes the proof of the Cheeger-Müller theorem.
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[HS85b] B Helffer and J Sjöstrand. “Puits multiples en limite semi-classique II. Interac-
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(1992), pp. 219–233.

[Mil66] J. Milnor. “Whitehead torsion”. In: Bull. Amer. Math. Soc. 72 (1966), pp. 358–426.
ISSN: 0002-9904. DOI: 10.1090/S0002-9904-1966-11484-2.

[Mül78] W. Müller. “Analytic torsion and R-torsion of Riemannian manifolds”. In: Ad-
vances in Mathematics 28 (3 1978), pp. 233–305. DOI: https://doi.org/
10.1016/0001-8708(78)90116-0.

[Mül93] W. Müller. “Analytic Torsion and R-Torsion for Unimodular Representations”. In:
Journal of the American Mathematical Society 6.3 (1993), pp. 721–753. DOI: 10.
2307/2152781.

[Roe98] J. Roe. Elliptic operators, topology, and asymptotic methods. 2nd ed. Addison Wes-
ley Longman, 1998.

[Ros97] S. Rosenberg. The Laplacian on a Riemannian Manifold: An Introduction to Anal-
ysis on Manifolds. 1st ed. Cambridge University Press, 1997.

https://doi.org/10.7146/math.scand.a-11642
https://doi.org/10.1090/S0002-9904-1966-11484-2
https://doi.org/https://doi.org/10.1016/0001-8708(78)90116-0
https://doi.org/https://doi.org/10.1016/0001-8708(78)90116-0
https://doi.org/10.2307/2152781
https://doi.org/10.2307/2152781


BIBLIOGRAPHY 83

[RS71] D. B. Ray and I. M. Singer. “R-Torsion and the Laplacian on Riemannian Man-
ifolds”. In: Advances in Mathematics 7 (2 1971), pp. 145–210. DOI: https :
//doi.org/10.1016/0001-8708(71)90045-4.

[Sch78] A. S. Schwarz. “The partition function of degenerate quadratic functional and Ray-
Singer invariants”. In: Letters in Mathematical Physics 2 (1978), pp. 247–252. DOI:
https://doi.org/10.1007/BF00406412.

[Shu96] M. A. Shubin. “Semiclassical asymptotics on covering manifolds and morse in-
equalities”. In: Geometric and Functional Analysis GAFA 6.2 (Mar. 1996), pp. 370–
409. ISSN: 1420-8970. DOI: 10.1007/BF02247891.

[Sma61] S. Smale. “On Gradient Dynamical Systems”. In: Annals of Mathematics 74.1
(1961), pp. 199–206.

[Whi49] J H C Whitehead. “Combinatorial homotopy. I”. In: Bulletin (new series) of the
American Mathematical Society. 55.3 (1949), pp. 213–246. ISSN: 0273-0979.

[Wit82] E. Witten. “Supersymmetry and Morse theory”. In: J. Differential Geom. 17.4
(1982), pp. 661–692. DOI: https://doi.org/10.4310/jdg/1214437492.

https://doi.org/https://doi.org/10.1016/0001-8708(71)90045-4
https://doi.org/https://doi.org/10.1016/0001-8708(71)90045-4
https://doi.org/https://doi.org/10.1007/BF00406412
https://doi.org/10.1007/BF02247891
https://doi.org/https://doi.org/10.4310/jdg/1214437492

	Abstract
	Introduction
	Outline of the Proof

	The Knudsen-Mumford Map
	The Determinant Line of a Chain Complex
	The Knudsen-Mumford Map
	The Determinant of the Laplacian
	Torsion as a Metric on the Determinant Line

	The Milnor Metric
	The Reidemeister Metric
	Homology With Local Coefficients
	The Thom-Smale Complex
	The Milnor Metric

	The Ray-Singer Metric
	Ray-Singer Analytic Torsion
	A Product Formula for the Ray-Singer Torsion
	A Quasi-Isomorphism

	The Witten Laplacian
	The Witten Deformation
	The Spectrum of the Witten Laplacian

	Asymptotic Expansion of the Small Eigenvalues
	An Isometry From the Morse Complex to the de Rham Complex
	The Asymptotics of P,tet
	Two Identities
	Proof of the Main Theorem

	Asymptotic Expansion of the Large Eigenvalues
	Statement of the Comparison Theorem
	Determinant of an Almost Elliptic Operator with Parameter
	Proof of the Cheeger-Müller Theorem


